当前位置: X-MOL 学术Int. J. Appl. Earth Obs. Geoinf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Identifying node-corridor-network of tourist flow and influencing factors using GPS big data: A case study in Gansu and Qinghai provinces, China
International Journal of Applied Earth Observation and Geoinformation ( IF 7.6 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.jag.2024.104271
Zhiyu Zhang, Fuyuan Wang, Longtao Deng

Due to constraints in data and technological approaches, there is a deficiency in the analysis of spatial patterns and formation mechanisms of large-scale destination tourist flows at the provincial level. This study leverages open GPS trajectory big data and employs grid units to meticulously characterize the spatial patterns and associated formation mechanisms of regional-scale tourist flows in Qinghai and Gansu Provinces. The findings reveal the following: (1) Regional tourist flows exhibit a distinct “point-axis-ring” agglomeration distribution pattern. (2) The “Gansu-Qinghai Tourist Grand Loop” has emerged as a predominant regional tourism corridor. Within this loop, there are smaller, high-density sub-loops centered on specific tourist attractions. (3) Ecology, service and scenic area are the three major influencing mechanisms for spatial differentiation of tourist flow in Gansu-Qinghai region. The findings can provide significant insights for the prioritization of regional tourism route marketing and planning, the configuration of tourism service facilities, etc.

中文翻译:


利用GPS大数据识别旅游人流节点-廊道-网络及其影响因素——以甘肃省和青海省为例



由于数据和技术方法的限制,省级层面对大规模目的地旅游流的空间格局和形成机制的分析存在不足。本研究利用开放 GPS 轨迹大数据,并采用网格单元来细致地描述青海和甘肃省区域尺度旅游人流的空间格局和相关形成机制。研究结果揭示了以下几点:(1) 区域旅游流量表现出明显的“点-轴-环”集聚分布模式。(2) “甘肃-青海旅游大环”已成为主要的区域旅游走廊。在这个循环中,有以特定旅游景点为中心的更小、高密度的子循环。(3)生态、服务、景区是甘肃青海地区客流空间分异的三大影响机制。研究结果可为区域旅游路线营销和规划的优先排序、旅游服务设施的配置等提供重要见解。
更新日期:2024-11-20
down
wechat
bug