当前位置:
X-MOL 学术
›
Eur. J. Oper. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Overcoming poor data quality: Optimizing validation of precedence relation data
European Journal of Operational Research ( IF 6.0 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.ejor.2024.11.009 Benedikt Finnah, Jochen Gönsch, Alena Otto
European Journal of Operational Research ( IF 6.0 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.ejor.2024.11.009 Benedikt Finnah, Jochen Gönsch, Alena Otto
Insufficient data quality prevents data usage by decision support systems (DSS) in many areas of business. This is the case for data on precedence relations between tasks, which is relevant, for instance, in project scheduling and assembly line balancing. Inaccurate data on unnecessary precedence relations cannot be used, otherwise the recommendations of DSS may turn infeasible. So, unnecessary relations must be satisfied, diminishing the baseline problem’s solution space and the business result. Experts can validate the data, but their time is limited.
中文翻译:
克服数据质量差的问题:优化优先关系数据的验证
数据质量不足会阻碍决策支持系统 (DSS) 在许多业务领域使用数据。任务之间的优先关系数据就是这种情况,例如,与项目调度和装配线平衡有关。不能使用有关不必要的优先关系的不准确数据,否则 DSS 的建议可能会变得不可行。因此,必须满足不必要的关系,从而减少基线问题的解决方案空间和业务结果。专家可以验证数据,但他们的时间有限。
更新日期:2024-11-14
中文翻译:
克服数据质量差的问题:优化优先关系数据的验证
数据质量不足会阻碍决策支持系统 (DSS) 在许多业务领域使用数据。任务之间的优先关系数据就是这种情况,例如,与项目调度和装配线平衡有关。不能使用有关不必要的优先关系的不准确数据,否则 DSS 的建议可能会变得不可行。因此,必须满足不必要的关系,从而减少基线问题的解决方案空间和业务结果。专家可以验证数据,但他们的时间有限。