当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Exposure-Immobilization of Activated Carbon on Porous PMIA Fibers with High Gas-Absorption Capacity by Manipulating Their Pore Parameters Based on PEG as a Porogen for Designing Breathable and Flexible Chemical Protective Clothing
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-25 , DOI: 10.1021/acs.iecr.4c03080 Lingcheng Meng, Bo Li, Qibin Xu, Xiaosong Li, Deyang Wu, Pengqing Liu, Shengchang Zhang
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-25 , DOI: 10.1021/acs.iecr.4c03080 Lingcheng Meng, Bo Li, Qibin Xu, Xiaosong Li, Deyang Wu, Pengqing Liu, Shengchang Zhang
Despite the wide application of chemical protective clothing (CPC), the poor breathability, low gas-absorption capacity, and poor flexibility of conventional CPC still deteriorate the safety and wear comfort. To eliminate the use of binders during the coating of activated carbon on textiles and improve the service stability in various harsh environments, an activated carbon (AC)-loaded porous poly(m-phenyleneisophthalamide) (PMIA) fiber was fabricated by a blending wet-spinning process for creating breathable and flexible textiles with high gas-absorption capacity. Herein, for maximizing the exposure-immobilization effects of AC on the porous PMIA fiber surface and preserving the mechanical performance of porous composite fibers, the pore parameters derived from the nonsolvent-induced phase-separation process were further optimized by adding polyethylene glycol (PEG) as a porogen. By adjusting the molecular weight and the content of PEG, not only various pores with different morphological parameters were prepared but also the effects of different pore parameters on the gas-absorption capacity, mechanical performance, and AC loading stability of the resultant porous composite fibers were clarified. When the molecular weight and addition amount of PEG were selected as 2000 g/mol and 5 wt %, the combination of micropores with a specific surface area of 17.7 cm2/g and mesopores with a specific surface area of 145.2 cm2/g can offer better synergistic effects to maximize exposure and carry out the stable immobilization of AC on the fiber surface, as well as the preservation of composite’s mechanical properties. The gas-adsorption capacity and tensile strength of corresponding AC-loaded porous fibers reached 132.29 mg/g and 0.6 cN/dtex, respectively. Meanwhile, after the mechanical friction experiment, the load stability of the AC without any detachment from the fiber surface was further confirmed. Finally, compared to the commercial CPC (FFF02), better air permeability and higher gas adsorption capacity can be offered by gas-absorption textiles directly fabricated from these AC-loaded PMIA porous fibers.
中文翻译:
以 PEG 为致孔剂,通过操纵其孔隙参数,将活性炭暴露在具有高气体吸收能力的多孔 PMIA 纤维上,用于设计透气、灵活的化学防护服
尽管化学防护服 (CPC) 应用广泛,但传统 CPC 的透气性差、气体吸收能力低、柔韧性差等问题仍然影响着化学防护服的安全性和穿着舒适性。为了在纺织品上涂覆活性炭时避免使用粘合剂并提高在各种恶劣环境中的使用稳定性,采用混纺湿纺工艺制备了一种负载活性炭 (AC) 的多孔聚苯二甲酰胺 (PMIA) 纤维,用于制造具有高气体吸收能力的透气和柔性纺织品。在此,为了最大限度地发挥 AC 对多孔 PMIA 纤维表面的暴露固定效应并保持多孔复合纤维的力学性能,通过添加聚乙二醇 (PEG) 作为致孔剂,进一步优化了非溶剂诱导相分离过程得出的孔参数。通过调整 PEG 的分子量和含量,不仅制备了具有不同形貌参数的各种孔隙,还阐明了不同孔隙参数对所得多孔复合纤维的气体吸收能力、力学性能和交流负载稳定性的影响。当 PEG 的分子量和添加量分别为 2000 g/mol 和 5 wt % 时,比表面积为 17.7 cm2/g 的微孔和比表面积为 145.2cm2/g 的介孔的组合可以提供更好的协同效应,以最大限度地提高暴露量,并在纤维表面进行 AC 的稳定固定, 以及保持复合材料的机械性能。相应的 AC 负载多孔纤维的气体吸附容量和拉伸强度达到 132.29 mg/g 和 0.6 cN/dtex。同时,经过机械摩擦实验,进一步证实了 AC 的负载稳定性,没有与纤维表面发生任何分离。最后,与商用 CPC (FFF02) 相比,由这些负载 AC 的 PMIA 多孔纤维直接制成的气体吸收纺织品可以提供更好的透气性和更高的气体吸附能力。
更新日期:2024-11-25
中文翻译:
以 PEG 为致孔剂,通过操纵其孔隙参数,将活性炭暴露在具有高气体吸收能力的多孔 PMIA 纤维上,用于设计透气、灵活的化学防护服
尽管化学防护服 (CPC) 应用广泛,但传统 CPC 的透气性差、气体吸收能力低、柔韧性差等问题仍然影响着化学防护服的安全性和穿着舒适性。为了在纺织品上涂覆活性炭时避免使用粘合剂并提高在各种恶劣环境中的使用稳定性,采用混纺湿纺工艺制备了一种负载活性炭 (AC) 的多孔聚苯二甲酰胺 (PMIA) 纤维,用于制造具有高气体吸收能力的透气和柔性纺织品。在此,为了最大限度地发挥 AC 对多孔 PMIA 纤维表面的暴露固定效应并保持多孔复合纤维的力学性能,通过添加聚乙二醇 (PEG) 作为致孔剂,进一步优化了非溶剂诱导相分离过程得出的孔参数。通过调整 PEG 的分子量和含量,不仅制备了具有不同形貌参数的各种孔隙,还阐明了不同孔隙参数对所得多孔复合纤维的气体吸收能力、力学性能和交流负载稳定性的影响。当 PEG 的分子量和添加量分别为 2000 g/mol 和 5 wt % 时,比表面积为 17.7 cm2/g 的微孔和比表面积为 145.2cm2/g 的介孔的组合可以提供更好的协同效应,以最大限度地提高暴露量,并在纤维表面进行 AC 的稳定固定, 以及保持复合材料的机械性能。相应的 AC 负载多孔纤维的气体吸附容量和拉伸强度达到 132.29 mg/g 和 0.6 cN/dtex。同时,经过机械摩擦实验,进一步证实了 AC 的负载稳定性,没有与纤维表面发生任何分离。最后,与商用 CPC (FFF02) 相比,由这些负载 AC 的 PMIA 多孔纤维直接制成的气体吸收纺织品可以提供更好的透气性和更高的气体吸附能力。