当前位置: X-MOL 学术Cem. Concr. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rheology dependent pore structure optimization of high-performance foam concrete
Cement and Concrete Research ( IF 10.9 ) Pub Date : 2024-11-25 , DOI: 10.1016/j.cemconres.2024.107737
Dingqiang Fan, Chunpeng Zhang, Jian-Xin Lu, Ligang Peng, Rui Yu, Chi Sun Poon

Foam concrete encounters a fundamental challenge in balancing lightweight and high strength. Pore optimization is the key to address this problem. This study starts with rheology control to optimize the pore structure of foam concretes, thereby designing high-performance foam concrete (HPFC). X-ray computed tomography was employed to explore the relationship between rheology and pore characteristics, revealing the corresponding control mechanisms. The findings indicated that rheological parameters, particularly viscosity, significantly influenced pore size, uniformity, sphericity, fractal dimension and connectivity. Therefore, there was an optimal viscosity range (1.30 ± 0.15 Pa·s) for achieving the desirable pore structure. Mechanical analysis demonstrated that the viscosity could impact the balance of the added foams under dynamic and static conditions via drag force, resulting in changes to the pore structure. After pore optimization, the HPFCs exhibited high compressive strength (2–3 times higher than normal foam concrete at an equal density) and excellent durability comparable to high-performance concrete.

中文翻译:


高性能泡沫混凝土的流变依赖性孔隙结构优化



泡沫混凝土在平衡轻质和高强度方面遇到了根本性挑战。毛孔优化是解决这个问题的关键。本研究从流变控制开始,优化泡沫混凝土的孔隙结构,从而设计高性能泡沫混凝土 (HPFC)。采用 X 射线计算机断层扫描探讨流变学与孔隙特性之间的关系,揭示相应的控制机制。结果表明,流变参数,尤其是粘度,显着影响孔径、均匀性、球形度、分形维度和连通性。因此,有一个最佳的粘度范围 (1.30 ± 0.15 Pa·s) 来实现理想的孔隙结构。力学分析表明,粘度可以通过阻力在动态和静态条件下影响添加的泡沫的平衡,从而导致孔隙结构发生变化。孔隙优化后,HPFC 表现出高抗压强度(在相同密度下比普通泡沫混凝土高 2-3 倍)和与高性能混凝土相当的出色耐久性。
更新日期:2024-11-25
down
wechat
bug