当前位置:
X-MOL 学术
›
Appl. Math. Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Structure-preserving exponential time differencing methods for modeling Josephson Junctions
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.aml.2024.109387 Fiona McIntosh, Lily Amirzadeh, Brian E. Moore
Applied Mathematics Letters ( IF 2.9 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.aml.2024.109387 Fiona McIntosh, Lily Amirzadeh, Brian E. Moore
Explicit, conformal symplectic, exponential time differencing (ETD) methods have numerous advantages over other well-known and commonly used methods, including structure-preservation, high stability, ease of implementation, and computational efficiency. Such methods are constructed with second and fourth order accuracy through composition techniques using a simple first order scheme. For modeling Josephson Junctions, these ETD schemes regularly exhibit the best balance of efficiency and accuracy when compared to other commonly used methods.
中文翻译:
用于 Josephson 结建模的结构保持指数时间差分方法
与其他众所周知和常用的方法相比,显式、共形对称、指数时间差分 (ETD) 方法具有许多优势,包括结构保持、高稳定性、易于实现和计算效率。这种方法是通过使用简单的一阶方案的组合技术以二阶和四阶精度构建的。对于约瑟夫森结建模,与其他常用方法相比,这些 ETD 方案通常表现出效率和精度的最佳平衡。
更新日期:2024-11-19
中文翻译:
用于 Josephson 结建模的结构保持指数时间差分方法
与其他众所周知和常用的方法相比,显式、共形对称、指数时间差分 (ETD) 方法具有许多优势,包括结构保持、高稳定性、易于实现和计算效率。这种方法是通过使用简单的一阶方案的组合技术以二阶和四阶精度构建的。对于约瑟夫森结建模,与其他常用方法相比,这些 ETD 方案通常表现出效率和精度的最佳平衡。