当前位置: X-MOL 学术Appl. Math. Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new nonlocal impulsive fractional differential hemivariational inclusions with an application to a frictional contact problem
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.amc.2024.129211
Tao Chen, Yao-jia Zhang, Nan-jing Huang, Yi-bin Xiao

This paper is addressed to the study of a novel impulsive fractional differential hemivariational inclusions (IFDHI) with a nonlocal condition, comprising an impulsive fractional differential inclusion (IFDI) with a nonlocal condition and a hemivariational inequality (HVI), within separable reflexive Banach spaces. Initially, we establish the unique solvability of the HVI by adopting the surjectivity theorem for set-valued mappings. Subsequently, we demonstrate that there exist mild solutions for the new IFDHI by utilizing the theory of measure of noncompactness (MNC) and fixed point theorem (FPT) for condensing set-valued mappings. Additionally, we employ our principal findings to establish the solvability of a new frictional contact problem (FCP) concerning an elastic body interacting with a foundation within a finite time interval, considering the temperature effect.

中文翻译:


一种新的非局部脉冲分数阶微分半变分夹杂物及其在摩擦接触问题中的应用



本文旨在研究一种具有非局部条件的新型脉冲分数级差分半变分夹杂物 (IFDHI),包括具有非局部条件的脉冲分数级差分夹杂物 (IFDI) 和半变分不等式 (HVI),位于可分离的反射 Banach 空间内。最初,我们通过采用设定值映射的满射性定理来建立 HVI 的独特可解性。随后,我们利用非紧凑性测度理论 (MNC) 和不动点定理 (FPT) 来压缩集合值映射,证明了新的 IFDHI 存在温和的解决方案。此外,考虑到温度效应,我们利用我们的主要发现来确定一个新的摩擦接触问题 (FCP) 的可解性,该问题涉及弹性体在有限时间间隔内与地基相互作用。
更新日期:2024-11-20
down
wechat
bug