当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A sparse optimization approach for simultaneous orthogonal tensor diagonalization
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.amc.2024.129203 Xinying Li, Chao Chang, Jianze Li, Yuning Yang
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.amc.2024.129203 Xinying Li, Chao Chang, Jianze Li, Yuning Yang
This paper presents a sparse optimization method for the simultaneous orthogonal tensor diagonalization. The model treats off-diagonal elements of tensors as entities requiring sparsity, guided by an ℓ 1 norm regularizer to optimize the diagonalization process. A gradient-based alternating multi-block Jacobi-AMB algorithm is developed to address the optimization problem on the product of orthogonal groups. We establish the global convergence based on the Kurdyka-Łojasiewicz property. Numerical experiments demonstrate that the Jacobi-AMB performs well in efficiency; under certain circumstances, its stability and effectiveness also perform well.
中文翻译:
一种用于同步正交张量对角化的稀疏优化方法
该文提出了一种用于同步正交张量对角化的稀疏优化方法。该模型将张量的非对角线元素视为需要稀疏性的实体,由 l1 范数正则化器指导以优化对角化过程。该文提出一种基于梯度的交替多区组 Jacobi-AMB 算法来解决正交群乘积的优化问题。我们基于 Kurdyka-Łojasiewicz 属性建立全局收敛。数值实验表明,Jacobi-AMB 在效率方面表现良好;在某些情况下,它的稳定性和有效性也表现良好。
更新日期:2024-11-19
中文翻译:
一种用于同步正交张量对角化的稀疏优化方法
该文提出了一种用于同步正交张量对角化的稀疏优化方法。该模型将张量的非对角线元素视为需要稀疏性的实体,由 l1 范数正则化器指导以优化对角化过程。该文提出一种基于梯度的交替多区组 Jacobi-AMB 算法来解决正交群乘积的优化问题。我们基于 Kurdyka-Łojasiewicz 属性建立全局收敛。数值实验表明,Jacobi-AMB 在效率方面表现良好;在某些情况下,它的稳定性和有效性也表现良好。