当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bounds for the incidence [formula omitted]-spectral radius of uniform hypergraphs
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.amc.2024.129201 Peng-Li Zhang, Xiao-Dong Zhang
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.amc.2024.129201 Peng-Li Zhang, Xiao-Dong Zhang
The incidence Q -spectral radius of a k -uniform hypergraph G with n vertices and m edges is defined as the spectral radius of the incidence Q -tensor Q ⁎ : = R I R T , where R is the incidence matrix of G , and I is an order k dimension m identity tensor. Since the ( i 1 , i 2 , … , i k ) -entry of Q ⁎ is involved in the number of edges in G containing vertices i 1 , i 2 , … , i k simultaneously, more structural properties of G from the entry of Q ⁎ than other commonly used tensors associated with hypergraphs may be discovered. In this paper, we present several bounds on the incidence Q -spectral radius of G in terms of degree sequences, which are better than some known results in some cases.
中文翻译:
均匀超图的入射 [公式省略] 光谱半径的边界
具有 n 个顶点和 m 条边的 k 均匀超图 G 的入射 Q 谱半径定义为入射 Q 张量 Q⁎:=RIRT 的谱半径,其中 R 是 G 的入射矩阵,I 是 k 阶维度 m 恒等张量。由于 Q⁎ 的 (i1,i2,...,ik) 条目同时涉及 G 中同时包含顶点 i1,i2,...,ik 的边数,因此可能会发现 Q⁎ 条目中 G 的结构特性比与超图相关的其他常用张量更多。在本文中,我们提出了 G 入射 Q 谱半径的几个度数序列边界,在某些情况下,这些边界比一些已知的结果要好。
更新日期:2024-11-18
中文翻译:
均匀超图的入射 [公式省略] 光谱半径的边界
具有 n 个顶点和 m 条边的 k 均匀超图 G 的入射 Q 谱半径定义为入射 Q 张量 Q⁎:=RIRT 的谱半径,其中 R 是 G 的入射矩阵,I 是 k 阶维度 m 恒等张量。由于 Q⁎ 的 (i1,i2,...,ik) 条目同时涉及 G 中同时包含顶点 i1,i2,...,ik 的边数,因此可能会发现 Q⁎ 条目中 G 的结构特性比与超图相关的其他常用张量更多。在本文中,我们提出了 G 入射 Q 谱半径的几个度数序列边界,在某些情况下,这些边界比一些已知的结果要好。