当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
S-packing colorings of distance graphs with distance sets of cardinality 2
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.amc.2024.129200 Boštjan Brešar, Jasmina Ferme, Přemysl Holub, Marko Jakovac, Petra Melicharová
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.amc.2024.129200 Boštjan Brešar, Jasmina Ferme, Přemysl Holub, Marko Jakovac, Petra Melicharová
For a non-decreasing sequence S = ( s 1 , s 2 , … ) of positive integers, a partition of the vertex set of a graph G into subsets X 1 , … , X ℓ , such that vertices in X i are pairwise at distance greater than s i for every i ∈ { 1 , … , ℓ } , is called an S -packing ℓ -coloring of G . The minimum ℓ for which G admits an S -packing ℓ -coloring is called the S -packing chromatic number of G . In this paper, we consider S -packing colorings of the integer distance graphs with respect two positive integers k and t , which are the graphs whose vertex set is Z , and two vertices x , y ∈ Z are adjacent whenever | x − y | ∈ { k , t } . We complement partial results from two earlier papers, thus determining all values of the S -packing chromatic numbers of these distance graphs for all sequence S such that s i ≤ 2 for all i . In particular, if S = ( 1 , 1 , 2 , 2 , … ) , then the S -packing chromatic number is 2 if k + t is even, and 4 otherwise, while if S = ( 1 , 2 , 2 , … ) , then the S -packing chromatic number is 5, unless { k , t } = { 2 , 3 } when it is 6; when S = ( 2 , 2 , 2 , … ) , the corresponding formula is more complex.
中文翻译:
距离基数集为 2 的距离图的 S 打包着色
对于正整数的非递减序列 S=(s1,s2,...),将图 G 的顶点集划分为子集 X1,...,Xl,使得 习 中的顶点在每个 i∈{1,...,l} 的距离大于 si 处成对,称为 G 的 S 打包 l 着色。G 接受 S 填充 l 着色的最小 l 称为 G 的 S 填充色数。在本文中,我们考虑了关于两个正整数 k 和 t 的整数距离图的 S 打包着色,这两个图的顶点集是 Z,并且每当 |x−y|∈{k,t} 时两个顶点 x,y∈Z 相邻。我们补充了前两篇论文的部分结果,从而确定了所有序列 S 的这些距离图的 S 打包色数的所有值,使得所有 i 的 si≤2。特别是,如果 S=(1,1,2,2,...),则 S 压缩色数如果 k+t 为偶数,则 S 压缩色数为 2,否则为 4,而如果 S=(1,2,2,...),则 S 压缩色数为 5,除非 {k,t}={2,3} 当它是 6 时;当 S=(2,2,2,...) 时,相应的公式更复杂。
更新日期:2024-11-20
中文翻译:
距离基数集为 2 的距离图的 S 打包着色
对于正整数的非递减序列 S=(s1,s2,...),将图 G 的顶点集划分为子集 X1,...,Xl,使得 习 中的顶点在每个 i∈{1,...,l} 的距离大于 si 处成对,称为 G 的 S 打包 l 着色。G 接受 S 填充 l 着色的最小 l 称为 G 的 S 填充色数。在本文中,我们考虑了关于两个正整数 k 和 t 的整数距离图的 S 打包着色,这两个图的顶点集是 Z,并且每当 |x−y|∈{k,t} 时两个顶点 x,y∈Z 相邻。我们补充了前两篇论文的部分结果,从而确定了所有序列 S 的这些距离图的 S 打包色数的所有值,使得所有 i 的 si≤2。特别是,如果 S=(1,1,2,2,...),则 S 压缩色数如果 k+t 为偶数,则 S 压缩色数为 2,否则为 4,而如果 S=(1,2,2,...),则 S 压缩色数为 5,除非 {k,t}={2,3} 当它是 6 时;当 S=(2,2,2,...) 时,相应的公式更复杂。