当前位置:
X-MOL 学术
›
Appl. Math. Comput.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Extremizing antiregular graphs by modifying total σ-irregularity
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.amc.2024.129199 Martin Knor, Riste Škrekovski, Slobodan Filipovski, Darko Dimitrov
Applied Mathematics and Computation ( IF 3.5 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.amc.2024.129199 Martin Knor, Riste Škrekovski, Slobodan Filipovski, Darko Dimitrov
The total σ -irregularity is given by σ t ( G ) = ∑ { u , v } ⊆ V ( G ) ( d G ( u ) − d G ( v ) ) 2 , where d G ( z ) indicates the degree of a vertex z within the graph G . It is known that the graphs maximizing σ t -irregularity are split graphs with only a few distinct degrees. Since one might typically expect that graphs with as many distinct degrees as possible achieve maximum irregularity measures, we modify this invariant to σ t f ( n ) ( G ) = ∑ { u , v } ⊆ V ( G ) | d G ( u ) − d G ( v ) | f ( n ) , where n = | V ( G ) | and f ( n ) > 0 . We study under what conditions the above modification obtains its maximum for antiregular graphs. We consider general graphs, trees, and chemical graphs, and accompany our results with a few problems and conjectures.
中文翻译:
通过修改总 σ 不规则性来极端化反规则图
总σ不规则性由 σt(G)=∑{u,v}⊆V(G)(dG(u)−dG(v))2 给出,其中 dG(z) 表示图 G 中顶点 z 的度数。众所周知,最大化 σt 不规则性的图是只有几个不同度数的分裂图。由于人们通常期望具有尽可能多的不同度数的图实现最大不规则性度量,因此我们将此不变量修改为 σtf(n)(G)=∑{u,v}⊆V(G)|dG(u)−dG(v)|f(n),其中 n=|V(G)|和 f(n)>0。我们研究了在什么条件下,上述修改在反正则图中获得了最大值。我们考虑一般图、树和化学图,并在我们的结果中伴随着一些问题和猜想。
更新日期:2024-11-18
中文翻译:
通过修改总 σ 不规则性来极端化反规则图
总σ不规则性由 σt(G)=∑{u,v}⊆V(G)(dG(u)−dG(v))2 给出,其中 dG(z) 表示图 G 中顶点 z 的度数。众所周知,最大化 σt 不规则性的图是只有几个不同度数的分裂图。由于人们通常期望具有尽可能多的不同度数的图实现最大不规则性度量,因此我们将此不变量修改为 σtf(n)(G)=∑{u,v}⊆V(G)|dG(u)−dG(v)|f(n),其中 n=|V(G)|和 f(n)>0。我们研究了在什么条件下,上述修改在反正则图中获得了最大值。我们考虑一般图、树和化学图,并在我们的结果中伴随着一些问题和猜想。