当前位置:
X-MOL 学术
›
J. Ind. Eng. Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Advancements in transition metal sulfide supercapacitors: A focused review on high-performance energy storage
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.jiec.2024.11.012 Mohammad Shariq, Dalal Alhashmialameer, Hind Adawi, Mazen R. Alrahili, Majed Y.A. Almashnowi, Ali Alzahrani, Mukul Sharma, Syed Kashif Ali, Y. Slimani
Journal of Industrial and Engineering Chemistry ( IF 5.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.jiec.2024.11.012 Mohammad Shariq, Dalal Alhashmialameer, Hind Adawi, Mazen R. Alrahili, Majed Y.A. Almashnowi, Ali Alzahrani, Mukul Sharma, Syed Kashif Ali, Y. Slimani
The advancement of efficient energy storage technologies has become a critical area of focus in recent years. Transition metal sulfides (TMSs), due to their superior redox properties, high electrical conductivity, and excellent theoretical capacitance, have emerged as highly promising electrode materials for next-generation supercapacitors. Through compositional and structural engineering, significant improvements have been achieved in the electrochemical performance of TMSs, including materials based on Mn, V, Co, Fe, Ni, Mo, Zn, W, and Sn. Key strategies for enhancing TMS electrodes include morphological control and composite engineering, both of which have proven instrumental in addressing fundamental challenges such as slow reaction kinetics, limited structural stability, and significant volume expansion during charge/discharge cycles. This study highlights the transformative potential of optimized TMSs, particularly when paired with advanced electrochemical catalysts, to overcome these barriers and drive the development of high-performance supercapacitors. TMS-based electrodes improve charge storage mechanisms, solving energy storage system problems and enabling future, cost-effective, and sustainable energy storage technologies. This study tackles crucial information gaps in charge storage kinetics and processes, suggesting possibilities to innovate in this field. This research concludes an in-depth exploration of the opportunities, challenges, and potential strategies for leveraging TMSs to shape the future of high-efficiency supercapacitors.
中文翻译:
过渡金属硫化物超级电容器的进展:高性能储能的重点综述
近年来,高效储能技术的进步已成为一个关键关注领域。过渡金属硫化物 (TMS) 由于其卓越的氧化还原性能、高导电性和出色的理论电容,已成为下一代超级电容器极具前景的电极材料。通过成分和结构工程,TMS 的电化学性能得到了显著改进,包括基于 Mn、V、Co、Fe、Ni、Mo、Zn、W 和 Sn 的材料。增强 TMS 电极的关键策略包括形态控制和复合工程,这两者都已被证明有助于解决基本挑战,例如慢反应动力学、 结构稳定性有限,在充电/放电循环期间体积显著膨胀。本研究强调了优化的 TMS 的变革潜力,特别是与先进的电化学催化剂配合使用时,可以克服这些障碍并推动高性能超级电容器的发展。基于 TMS 的电极改进了电荷存储机制,解决了储能系统问题,并实现了未来、经济高效和可持续的储能技术。本研究解决了电荷存储动力学和过程中的关键信息差距,提出了在该领域创新的可能性。本研究总结了对利用 TMS 塑造高效超级电容器未来的机遇、挑战和潜在策略的深入探索。
更新日期:2024-11-15
中文翻译:
过渡金属硫化物超级电容器的进展:高性能储能的重点综述
近年来,高效储能技术的进步已成为一个关键关注领域。过渡金属硫化物 (TMS) 由于其卓越的氧化还原性能、高导电性和出色的理论电容,已成为下一代超级电容器极具前景的电极材料。通过成分和结构工程,TMS 的电化学性能得到了显著改进,包括基于 Mn、V、Co、Fe、Ni、Mo、Zn、W 和 Sn 的材料。增强 TMS 电极的关键策略包括形态控制和复合工程,这两者都已被证明有助于解决基本挑战,例如慢反应动力学、 结构稳定性有限,在充电/放电循环期间体积显著膨胀。本研究强调了优化的 TMS 的变革潜力,特别是与先进的电化学催化剂配合使用时,可以克服这些障碍并推动高性能超级电容器的发展。基于 TMS 的电极改进了电荷存储机制,解决了储能系统问题,并实现了未来、经济高效和可持续的储能技术。本研究解决了电荷存储动力学和过程中的关键信息差距,提出了在该领域创新的可能性。本研究总结了对利用 TMS 塑造高效超级电容器未来的机遇、挑战和潜在策略的深入探索。