当前位置:
X-MOL 学术
›
Appl. Comput. Harmon. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Multidimensional unstructured sparse recovery via eigenmatrix
Applied and Computational Harmonic Analysis ( IF 2.6 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.acha.2024.101725 Lexing Ying
Applied and Computational Harmonic Analysis ( IF 2.6 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.acha.2024.101725 Lexing Ying
This note considers the multidimensional unstructured sparse recovery problems. Examples include Fourier inversion and sparse deconvolution. The eigenmatrix is a data-driven construction with desired approximate eigenvalues and eigenvectors proposed for the one-dimensional problems. This note extends the eigenmatrix approach to multidimensional problems, providing a rather unified treatment for general kernels and unstructured sampling grids in both real and complex settings. Numerical results are provided to demonstrate the performance of the proposed method.
中文翻译:
通过特征矩阵进行多维非结构化稀疏恢复
本说明考虑了多维非结构化稀疏恢复问题。示例包括 Fourier inversion 和 sparse deconvolution。特征矩阵是一种数据驱动的结构,具有为一维问题提出的所需的近似特征值和特征向量。本文将特征矩阵方法扩展到多维问题,为实数和复数设置中的一般内核和非结构化采样网格提供了相当统一的处理。给出了所提方法的性能。
更新日期:2024-11-19
中文翻译:
通过特征矩阵进行多维非结构化稀疏恢复
本说明考虑了多维非结构化稀疏恢复问题。示例包括 Fourier inversion 和 sparse deconvolution。特征矩阵是一种数据驱动的结构,具有为一维问题提出的所需的近似特征值和特征向量。本文将特征矩阵方法扩展到多维问题,为实数和复数设置中的一般内核和非结构化采样网格提供了相当统一的处理。给出了所提方法的性能。