当前位置: X-MOL 学术Inf. Manag. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamic effects of emotions in microblogs on sharing during EID outbreaks: The contingent role of user personality traits
Information & Management ( IF 8.2 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.im.2024.104063
Liwei Xu, Mingxing Han, Jingguo Wang, Yu Chen, Jiangnan Qiu

Our study empirically examines whether users’ personality traits accentuate or attenuate the influence of emotions in microblogs on users’ sharing behavior over time on a social media platform (Weibo in particular) during emerging infectious disease (EID) outbreaks. We develop a theoretical framework to analyze the dynamic relationship between emotions in microblogs related to EID on users’ sharing with personality traits as moderators. We collected 92,621 microblogs on COVID-19 from Sina Weibo with 501,930 sharing users for hypothesis testing. We leveraged a machine learning method in combination with the vector autoregression model to test our research model. Our results indicate that users with high levels of neuroticism, openness, and agreeableness are more likely to share immediately upon seeing microblogs with negative emotions, while those high in conscientiousness usually share after some time. This study highlights the contingent role of personality traits in the relationship between emotions expressed in microblogs and users’ act of sharing. The dynamic effects (both short-term and long-term) on sharing of emotions in microblogs are contingent upon personality traits. The results help us to understand who shares microblogs, how and why they behave when facing emotional content during EID outbreaks. Our findings enhance the understanding of user behavior on social media platforms and provide actionable insights for potential interventions in response to EID outbreaks.

中文翻译:


EID爆发期间微博情绪对分享的动态影响:用户性格特质的权然作用



我们的研究实证考察了在新发传染病 (EID) 爆发期间,用户的人格特征是否会随着时间的推移增强或减弱微博中的情绪对用户在社交媒体平台(尤其是微博)上的分享行为的影响。我们开发了一个理论框架来分析与 EID 相关的微博中情绪与用户分享之间的动态关系,并以人格特质作为主持人。我们从新浪微博收集了 92,621 条关于 COVID-19 的微博,其中 501,930 名分享用户用于假设检验。我们将机器学习方法与向量自回归模型相结合来测试我们的研究模型。我们的结果表明,神经质、开放性和宜人性高的用户更有可能在看到有负面情绪的微博后立即分享,而尽责性高的用户通常会在一段时间后分享。本研究强调了人格特质在微博表达的情绪与用户分享行为之间关系中的偶然作用。在微博中分享情感的动态影响(短期和长期)取决于人格特征。结果有助于我们了解谁分享了微博,他们在 EID 爆发期间面对情绪化内容时的行为方式和原因。我们的研究结果增强了对社交媒体平台上用户行为的理解,并为应对 EID 爆发的潜在干预措施提供了可操作的见解。
更新日期:2024-11-14
down
wechat
bug