当前位置:
X-MOL 学术
›
J. Mech. Phys. Solids
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Mechanical properties of modular assembled composite lattice architecture
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.jmps.2024.105967 Cheng Gong, Robert O. Ritchie, Xingyu Wei, Qingxu Liu, Jian Xiong
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.jmps.2024.105967 Cheng Gong, Robert O. Ritchie, Xingyu Wei, Qingxu Liu, Jian Xiong
The layer-by-layer additive manufacturing approach results in the 3D printed composite lattice structure fails to exploit fiber reinforcement, thereby resulting in inferior mechanical qualities. To address this challenge, this study proposes a novel approach leveraging composite fused filament fabrication (FFF) printing to design modular assembled composite lattice structures. Initially, three high-performance lattice structures were transformed into discrete 2D components and assembled into 3D lattice structures. Subsequently, the mechanical properties of these structures were comprehensively assessed using theoretical, experimental, and finite element analysis methods. Finally, the comparison between the assembled structures and integrated printed lattice structures in terms of surface quality, mechanical properties, and manufacturability revealed significant advantages. The theoretical and finite element analyses accurately predicted the mechanical properties of the lattice structures. The lattice structures that were assembled in a modular way displayed an impressive 74% improvement in surface finish. Additionally, they showed peak strength increases of 140%, 27%, and 26%, respectively, for the mentioned types of topology. The energy absorption also increased significantly by 510.83%, 44.18%, and 30.24%. Furthermore, these assembled structures required less printing support materials, enhancing their manufacturability and cost-effectiveness. This new method of designing modular space structures goes beyond the limitations imposed by equipment by using high-performance topology. It allows for the construction of large-scale, lightweight space structures that offer excellent performance. This study explores innovative opportunities in the field of space manufacturing, offering potential implications for the development of lunar habitats, space telescopes, and space power stations.
中文翻译:
模块化组装复合晶格架构的力学性能
逐层增材制造方法导致 3D 打印的复合晶格结构无法利用纤维增强,从而导致机械质量不佳。为了应对这一挑战,本研究提出了一种利用复合熔丝制造 (FFF) 打印来设计模块化组装复合晶格结构的新方法。最初,三个高性能晶格结构被转化为离散的 2D 组件并组装成 3D 晶格结构。随后,使用理论、实验和有限元分析方法对这些结构的机械性能进行了全面评估。最后,组装结构和集成印刷晶格结构在表面质量、机械性能和可制造性方面的比较揭示了显着的优势。理论和有限元分析准确预测了晶格结构的机械性能。以模块化方式组装的晶格结构的表面光洁度提高了 74%,令人印象深刻。此外,对于上述拓扑类型,它们显示峰值强度分别增加了 140%、27% 和 26%。能量吸收也显著增加了 510.83%、44.18% 和 30.24%。此外,这些组装结构需要的打印支撑材料更少,从而提高了它们的可制造性和成本效益。这种设计模块化空间结构的新方法通过使用高性能拓扑超越了设备施加的限制。它允许构建具有出色性能的大型、轻量级空间结构。 本研究探索了太空制造领域的创新机会,为月球栖息地、太空望远镜和太空发电站的发展提供了潜在影响。
更新日期:2024-11-18
中文翻译:
模块化组装复合晶格架构的力学性能
逐层增材制造方法导致 3D 打印的复合晶格结构无法利用纤维增强,从而导致机械质量不佳。为了应对这一挑战,本研究提出了一种利用复合熔丝制造 (FFF) 打印来设计模块化组装复合晶格结构的新方法。最初,三个高性能晶格结构被转化为离散的 2D 组件并组装成 3D 晶格结构。随后,使用理论、实验和有限元分析方法对这些结构的机械性能进行了全面评估。最后,组装结构和集成印刷晶格结构在表面质量、机械性能和可制造性方面的比较揭示了显着的优势。理论和有限元分析准确预测了晶格结构的机械性能。以模块化方式组装的晶格结构的表面光洁度提高了 74%,令人印象深刻。此外,对于上述拓扑类型,它们显示峰值强度分别增加了 140%、27% 和 26%。能量吸收也显著增加了 510.83%、44.18% 和 30.24%。此外,这些组装结构需要的打印支撑材料更少,从而提高了它们的可制造性和成本效益。这种设计模块化空间结构的新方法通过使用高性能拓扑超越了设备施加的限制。它允许构建具有出色性能的大型、轻量级空间结构。 本研究探索了太空制造领域的创新机会,为月球栖息地、太空望远镜和太空发电站的发展提供了潜在影响。