当前位置:
X-MOL 学术
›
Acta Astronaut.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Improving landing stability and terrain adaptability in Lunar exploration with biomimetic lander design and control
Acta Astronautica ( IF 3.1 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.actaastro.2024.11.020 Jinyao Zhu, Jia Ma, Jinbao Chen, Chen Wang, Yunfeng Li, Zhihao Fan, Chaoyu Lu
Acta Astronautica ( IF 3.1 ) Pub Date : 2024-11-14 , DOI: 10.1016/j.actaastro.2024.11.020 Jinyao Zhu, Jia Ma, Jinbao Chen, Chen Wang, Yunfeng Li, Zhihao Fan, Chaoyu Lu
Traditional lunar landers face challenges due to strict flatness requirements at landing sites and the need to avoid complex terrains, which significantly limits their exploration capabilities and success rates. Additionally, their focus on stable landings often compromises their maneuverability, reducing adaptability to various lunar terrains. To address these issues, this study introduces a walkable cat-legged lander (WCLL) inspired by feline landing mechanisms. The WCLL integrates features from both traditional landers and rovers, enabling it to perform high-load landings and navigate effectively across diverse lunar surfaces. It utilizes magnetorheological dampers to dissipate impact energy and employs a soft-landing control method, achieving stable landings under various conditions, including vertical velocities of 3 m/s, payloads of 1280 kg, slopes of 15°, and horizontal disturbances at speeds of 2 m/s. Compared to the Chang'e−3 lander, the WCLL shows a 66.7 % increase in slope adaptability and a 22.6 % improvement in resistance to horizontal disturbances. Finally, experimental validation confirms the accuracy of the simulation model, providing valuable insights for future lunar exploration robot design.
中文翻译:
通过仿生着陆器设计和控制提高月球探测中的着陆稳定性和地形适应性
由于着陆点对着陆点的平坦度有严格的要求,并且需要避开复杂的地形,传统的月球着陆器面临着挑战,这极大地限制了它们的探测能力和成功率。此外,它们对稳定着陆的关注往往会损害它们的机动性,从而降低对各种月球地形的适应性。为了解决这些问题,本研究引入了一种受猫科动物着陆机制启发的可行走猫腿着陆器 (WCLL)。WCLL 集成了传统着陆器和漫游车的功能,使其能够执行高负载着陆并在不同的月球表面有效导航。它利用磁流变阻尼器来消散冲击能量,并采用软着陆控制方法,在垂直速度 3 m/s、有效载荷 1280 kg、坡度 15° 和速度 2 m/s 的水平扰动等各种条件下实现稳定着陆。与嫦娥三号着陆器相比,WCLL 的坡度适应性提高了 66.7%,对水平干扰的抵抗力提高了 22.6%。最后,实验验证证实了仿真模型的准确性,为未来的探月机器人设计提供了有价值的见解。
更新日期:2024-11-14
中文翻译:
通过仿生着陆器设计和控制提高月球探测中的着陆稳定性和地形适应性
由于着陆点对着陆点的平坦度有严格的要求,并且需要避开复杂的地形,传统的月球着陆器面临着挑战,这极大地限制了它们的探测能力和成功率。此外,它们对稳定着陆的关注往往会损害它们的机动性,从而降低对各种月球地形的适应性。为了解决这些问题,本研究引入了一种受猫科动物着陆机制启发的可行走猫腿着陆器 (WCLL)。WCLL 集成了传统着陆器和漫游车的功能,使其能够执行高负载着陆并在不同的月球表面有效导航。它利用磁流变阻尼器来消散冲击能量,并采用软着陆控制方法,在垂直速度 3 m/s、有效载荷 1280 kg、坡度 15° 和速度 2 m/s 的水平扰动等各种条件下实现稳定着陆。与嫦娥三号着陆器相比,WCLL 的坡度适应性提高了 66.7%,对水平干扰的抵抗力提高了 22.6%。最后,实验验证证实了仿真模型的准确性,为未来的探月机器人设计提供了有价值的见解。