当前位置:
X-MOL 学术
›
Plant Physiol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The receptor MIK2 interacts with the kinase RKS1 to control quantitative disease resistance to Xanthomonas campestris
Plant Physiology ( IF 6.5 ) Pub Date : 2024-11-23 , DOI: 10.1093/plphys/kiae626 Florent Delplace, Carine Huard-Chauveau, Fabrice Roux, Dominique Roby
Plant Physiology ( IF 6.5 ) Pub Date : 2024-11-23 , DOI: 10.1093/plphys/kiae626 Florent Delplace, Carine Huard-Chauveau, Fabrice Roux, Dominique Roby
Molecular mechanisms underlying qualitative resistance have been intensively studied. In contrast, although quantitative disease resistance (QDR) is a common, durable and broad-spectrum form of immune responses in plants, only a few related functional analyses have been reported. The atypical kinase Resistance related KinaSe1 (RKS1) is a major regulator of QDR to the bacterial pathogen Xanthomonas campestris (Xcc) and is positioned in a robust protein-protein decentralized network in Arabidopsis (Arabidopsis thaliana). Among the putative interactors of RKS1 found by yeast two-hybrid screening, we identified the receptor-like kinase MDIS1-Interacting Receptor-like Kinase 2 (MIK2). Here, using multiple complementary strategies including protein-protein interaction tests, mutant analysis, and network reconstruction, we report that MIK2 is a component of RKS1-mediated QDR to Xcc. First, by co-localization experiments, co-immunoprecipitation (Co-IP), and bimolecular fluorescence complementation (BiFC), we validated the physical interaction between RKS1 and MIK2 at the plasma membrane. Using mik2 mutants, we showed that MIK2 is required for QDR and contributes to resistance to the same level as RKS1. Interestingly, a catalytic mutant of MIK2 interacted with RKS1 but was unable to fully complement the mik2-1 mutant phenotype in response to Xcc. Finally, we investigated the potential role of the MIK2–RKS1 complex as a scaffolding component for the coordination of perception events by constructing a RKS1–MIK2 centered protein-protein interaction network. Eight mutants corresponding to seven RKs in this network showed a strong alteration in QDR to Xcc. Our findings provide insights into the molecular mechanisms underlying the perception events involved in QDR to Xcc.
中文翻译:
受体 MIK2 与激酶 RKS1 相互作用,以控制对油菜黄单胞菌的数量疾病耐药性
定性耐药的分子机制已得到深入研究。相比之下,尽管定量抗病性 (QDR) 是植物中一种常见、持久和广谱的免疫反应形式,但只有少数相关的功能分析被报道。非典型激酶耐药相关 KinaSe1 (RKS1) 是细菌病原体油菜黄单胞菌 (Xcc) QDR 的主要调节因子,位于拟南芥 (Arabidopsis thaliana) 中强大的蛋白质-蛋白质分散网络中。在通过酵母双杂交筛选发现的 RKS1 的推定相互作用物中,我们鉴定了受体样激酶 MDIS1 相互作用受体样激酶 2 (MIK2)。在这里,使用多种互补策略,包括蛋白质-蛋白质相互作用测试、突变体分析和网络重建,我们报道 MIK2 是 RKS1 介导的 QDR 到 Xcc 的一个组成部分。首先,通过共定位实验、免疫共沉淀 (Co-IP) 和双分子荧光互补 (BiFC),我们验证了 RKS1 和 MIK2 在质膜上的物理相互作用。使用 mik2 突变体,我们表明 MIK2 是 QDR 所必需的,并且有助于抵抗到 RKS1 相同的水平。有趣的是,MIK2 的催化突变体与 RKS1 相互作用,但无法响应 Xcc 而完全互补 mik2-1 突变表型。最后,我们通过构建以 RKS1-MIK2 为中心的蛋白质-蛋白质相互作用网络,研究了 MIK2-RKS1 复合物作为协调感知事件的支架成分的潜在作用。对应于该网络中 7 个 RK 的 8 个突变体显示 QDR 对 Xcc 的强烈改变。我们的研究结果为了解 QDR 到 Xcc 所涉及的感知事件的分子机制提供了见解。
更新日期:2024-11-23
中文翻译:
受体 MIK2 与激酶 RKS1 相互作用,以控制对油菜黄单胞菌的数量疾病耐药性
定性耐药的分子机制已得到深入研究。相比之下,尽管定量抗病性 (QDR) 是植物中一种常见、持久和广谱的免疫反应形式,但只有少数相关的功能分析被报道。非典型激酶耐药相关 KinaSe1 (RKS1) 是细菌病原体油菜黄单胞菌 (Xcc) QDR 的主要调节因子,位于拟南芥 (Arabidopsis thaliana) 中强大的蛋白质-蛋白质分散网络中。在通过酵母双杂交筛选发现的 RKS1 的推定相互作用物中,我们鉴定了受体样激酶 MDIS1 相互作用受体样激酶 2 (MIK2)。在这里,使用多种互补策略,包括蛋白质-蛋白质相互作用测试、突变体分析和网络重建,我们报道 MIK2 是 RKS1 介导的 QDR 到 Xcc 的一个组成部分。首先,通过共定位实验、免疫共沉淀 (Co-IP) 和双分子荧光互补 (BiFC),我们验证了 RKS1 和 MIK2 在质膜上的物理相互作用。使用 mik2 突变体,我们表明 MIK2 是 QDR 所必需的,并且有助于抵抗到 RKS1 相同的水平。有趣的是,MIK2 的催化突变体与 RKS1 相互作用,但无法响应 Xcc 而完全互补 mik2-1 突变表型。最后,我们通过构建以 RKS1-MIK2 为中心的蛋白质-蛋白质相互作用网络,研究了 MIK2-RKS1 复合物作为协调感知事件的支架成分的潜在作用。对应于该网络中 7 个 RK 的 8 个突变体显示 QDR 对 Xcc 的强烈改变。我们的研究结果为了解 QDR 到 Xcc 所涉及的感知事件的分子机制提供了见解。