当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quenching-induced lattice modifications endowing Li-rich layered cathodes with ultralow voltage decay and long life
Energy & Environmental Science ( IF 32.4 ) Pub Date : 2024-11-22 , DOI: 10.1039/d4ee02511c
Lingcai Zeng, Haoyan Liang, Yaqian Wang, Xiaolong Ying, Bao Qiu, Jiajie Pan, Yibin Zhang, Wen Wen, Xuechun Wang, Qingwen Gu, Junhao Li, Kaixiang Shi, Yanbin Shen, Quanbing Liu, Zhaoping Liu

While bringing high capacity, oxygen redox in Li-rich layered oxides has also led to severe voltage decay, hindering their practical applications. To break through this bottleneck, we herein propose a general and versatile strategy, brine quenching, to address this issue. Combining with multiple-scale characterizations, theory calculation and electrochemical performance, the underlying mechanism of voltage decay suppression by brine quenching is distinctly revealed. The quenching process can generate local bulk-compatible distortion, which can adjust the whole lattice oxygen framework to mitigate the disorder, and modulate the intrinsic redox properties of the material. The resulting LLO will maintain the ordered structure after long-term cycling, thus mitigating the voltage decay. Additionally, a robust surface can be established through the ion exchange to restrict oxygen release. Therefore, lattice oxygens both in the bulk and surface are stabilized. Benefiting from the synergistic effect, the 1.6 Ah full cell based on the magnesium–nitrate-solution-quenched sample exhibits over 80% retention after 2159 cycles and an ultra-long lifespan of 3200 cycles with a negligible voltage decay rate of 0.091 mV per cycle. This research provides a potential direction for designing next-generation cathode materials that combine long-life and ultralow voltage decay.

中文翻译:


淬火诱导的晶格修饰赋予富锂层状阴极超低电压衰减和长寿命



富锂层状氧化物中的氧氧化还原在带来高容量的同时,也导致了严重的电压衰减,阻碍了它们的实际应用。为了突破这个瓶颈,我们在此提出一种通用的策略,盐水淬火,来解决这个问题。结合多尺度表征、理论计算和电化学性能,明确揭示了盐水淬火抑制电压衰减的潜在机制。淬火过程可以产生局部体兼容畸变,从而可以调整整个晶格氧框架以减轻无序性,并调节材料的固有氧化还原性能。所得 LLO 将在长期循环后保持有序结构,从而减轻电压衰减。此外,可以通过离子交换建立坚固的表面以限制氧气的释放。因此,本体和表面的晶格氧都是稳定的。得益于协同效应,基于硝酸镁溶液淬火样品的 1.6 Ah 全电池在 2159 次循环后表现出超过 80% 的保留率和 3200 次循环的超长使用寿命,每循环 0.091 mV 的电压衰减率可以忽略不计。这项研究为设计结合了长寿命和超低电压衰减的下一代正极材料提供了潜在的方向。
更新日期:2024-11-22
down
wechat
bug