当前位置:
X-MOL 学术
›
Comput. Methods Appl. Mech. Eng.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Kolmogorov–Arnold-Informed neural network: A physics-informed deep learning framework for solving forward and inverse problems based on Kolmogorov–Arnold Networks
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.cma.2024.117518 Yizheng Wang, Jia Sun, Jinshuai Bai, Cosmin Anitescu, Mohammad Sadegh Eshaghi, Xiaoying Zhuang, Timon Rabczuk, Yinghua Liu
Computer Methods in Applied Mechanics and Engineering ( IF 6.9 ) Pub Date : 2024-11-18 , DOI: 10.1016/j.cma.2024.117518 Yizheng Wang, Jia Sun, Jinshuai Bai, Cosmin Anitescu, Mohammad Sadegh Eshaghi, Xiaoying Zhuang, Timon Rabczuk, Yinghua Liu
AI for partial differential equations (PDEs) has garnered significant attention, particularly with the emergence of Physics-informed neural networks (PINNs). The recent advent of Kolmogorov–Arnold Network (KAN) indicates that there is potential to revisit and enhance the previously MLP-based PINNs. Compared to MLPs, KANs offer interpretability and require fewer parameters. PDEs can be described in various forms, such as strong form, energy form, and inverse form. While mathematically equivalent, these forms are not computationally equivalent, making the exploration of different PDE formulations significant in computational physics. Thus, we propose different PDE forms based on KAN instead of MLP, termed Kolmogorov–Arnold-Informed Neural Network (KINN) for solving forward and inverse problems. We systematically compare MLP and KAN in various numerical examples of PDEs, including multi-scale, singularity, stress concentration, nonlinear hyperelasticity, heterogeneous, and complex geometry problems. Our results demonstrate that KINN significantly outperforms MLP regarding accuracy and convergence speed for numerous PDEs in computational solid mechanics, except for the complex geometry problem. This highlights KINN’s potential for more efficient and accurate PDE solutions in AI for PDEs.
中文翻译:
Kolmogorov-Arnold-Informed 神经网络:基于 Kolmogorov-Arnold 网络求解正向和逆向问题的物理知情深度学习框架
用于偏微分方程 (PDE) 的 AI 引起了广泛关注,尤其是随着物理信息神经网络 (PINN) 的出现。最近出现的 Kolmogorov-Arnold 网络 (KAN) 表明有可能重新审视和增强以前基于 MLP 的 PINN。与 MLP 相比,KAN 具有可解释性,并且需要的参数更少。偏微分方程可以用多种形式来描述,例如强形式、能量形式和逆形式。虽然在数学上等价,但这些形式在计算上并不等价,这使得对不同 PDE 公式的探索在计算物理学中具有重要意义。因此,我们提出了基于 KAN 而不是 MLP 的不同偏微分方程形式,称为 Kolmogorov-Arnold-Informed 神经网络 (KINN) 来解决正向和逆向问题。我们系统地比较了偏微分方程的各种数值示例中的 MLP 和 KAN,包括多尺度、奇异性、应力集中、非线性超弹性、异质和复杂几何问题。我们的结果表明,除了复杂的几何问题外,在计算固体力学中,KINN 在精度和收敛速度方面明显优于 MLP。这凸显了 KINN 在 AI for PDE 中更高效、更准确的 PDE 解决方案的潜力。
更新日期:2024-11-18
中文翻译:
Kolmogorov-Arnold-Informed 神经网络:基于 Kolmogorov-Arnold 网络求解正向和逆向问题的物理知情深度学习框架
用于偏微分方程 (PDE) 的 AI 引起了广泛关注,尤其是随着物理信息神经网络 (PINN) 的出现。最近出现的 Kolmogorov-Arnold 网络 (KAN) 表明有可能重新审视和增强以前基于 MLP 的 PINN。与 MLP 相比,KAN 具有可解释性,并且需要的参数更少。偏微分方程可以用多种形式来描述,例如强形式、能量形式和逆形式。虽然在数学上等价,但这些形式在计算上并不等价,这使得对不同 PDE 公式的探索在计算物理学中具有重要意义。因此,我们提出了基于 KAN 而不是 MLP 的不同偏微分方程形式,称为 Kolmogorov-Arnold-Informed 神经网络 (KINN) 来解决正向和逆向问题。我们系统地比较了偏微分方程的各种数值示例中的 MLP 和 KAN,包括多尺度、奇异性、应力集中、非线性超弹性、异质和复杂几何问题。我们的结果表明,除了复杂的几何问题外,在计算固体力学中,KINN 在精度和收敛速度方面明显优于 MLP。这凸显了 KINN 在 AI for PDE 中更高效、更准确的 PDE 解决方案的潜力。