当前位置:
X-MOL 学术
›
Transp. Res. Part E Logist. Transp. Rev.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Data-driven resilience analysis of the global container shipping network against two cascading failures
Transportation Research Part E: Logistics and Transportation Review ( IF 8.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.tre.2024.103857 Yuhao Cao, Xuri Xin, Pisit Jarumaneeroj, Huanhuan Li, Yinwei Feng, Jin Wang, Xinjian Wang, Robyn Pyne, Zaili Yang
Transportation Research Part E: Logistics and Transportation Review ( IF 8.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.tre.2024.103857 Yuhao Cao, Xuri Xin, Pisit Jarumaneeroj, Huanhuan Li, Yinwei Feng, Jin Wang, Xinjian Wang, Robyn Pyne, Zaili Yang
Being a fundamental link in the global supply chain and logistics system, the global container shipping network (GCSN) is highly interconnected, which causes the network resilience challenges by the cascading failures triggered by extreme events (e.g., COVID-19 and regional conflicts). Within this dynamic process, the load redistribution behaviour is the core countermeasure for the propagation of cascading failures, however the diversified mechanism has not been systematically studied. To fill in these gaps, this study aims to develop a pioneering resilience analysis framework against cascading failures, to comprehensively explore the impact of port disruptions on the shipping network resilience. By pioneering the influence analysis of port betweenness, weight, and connectivity on load determination and target selection, a port importance assessment method is applied as the foundation for load redistribution decisions. Based on the global service routes data from 2020 to 2023, the GCSN resilience against the sequential cascading failures of 686 ports worldwide is quantified by three metrics. A scenario analysis is conducted to simulate the effects of cascading failures triggered by 5 historical port disruption events (e.g., the COVID-19 port lockdowns and the 2024 bridge collision at Baltimore port) on resilience of the network. Determining the identified critical capacity threshold is pivotal for effectively enhancing the system’s resilience and preventing the likelihood of cascading failures. Additionally, this study offers cutting-edge perspectives to the global shipping industry stakeholders. It presents distinct strategies and preferences, offering actionable advice for port authorities in their risk response decisions. Moreover, this study delivers an economic rationale and critical evaluations, instrumental for the strategic maintenance, planning and augmentation of port infrastructures to prevent unforeseen risks.
中文翻译:
对全球集装箱航运网络进行数据驱动的弹性分析,以应对两次级联故障
作为全球供应链和物流系统的基本环节,全球集装箱运输网络 (GCSN) 高度互联,极端事件(例如 COVID-19 和区域冲突)引发的级联故障导致网络弹性面临挑战。在这个动态过程中,载荷再分配行为是级联失效传播的核心对策,但尚未系统地研究多样化的机制。为了填补这些空白,本研究旨在开发一个针对级联故障的开创性弹性分析框架,以全面探索港口中断对航运网络弹性的影响。通过率先对港口中介性、权重和连通性对负载确定和目标选择的影响分析,应用了港口重要性评估方法作为负载再分配决策的基础。根据 2020 年至 2023 年的全球服务航线数据,GCSN 对全球 686 个港口连续级联故障的弹性通过三个指标进行量化。进行了情景分析,以模拟由 5 个历史港口中断事件(例如,COVID-19 港口封锁和 2024 年巴尔的摩港桥梁碰撞)触发的级联故障对网络弹性的影响。确定已确定的关键容量阈值对于有效增强系统的弹性和防止级联故障的可能性至关重要。此外,本研究还为全球航运业利益相关者提供了前沿视角。它提出了不同的策略和偏好,为港口当局的风险应对决策提供了可行的建议。 此外,本研究提供了经济原理和关键评估,有助于港口基础设施的战略维护、规划和增强,以防止不可预见的风险。
更新日期:2024-11-19
中文翻译:
对全球集装箱航运网络进行数据驱动的弹性分析,以应对两次级联故障
作为全球供应链和物流系统的基本环节,全球集装箱运输网络 (GCSN) 高度互联,极端事件(例如 COVID-19 和区域冲突)引发的级联故障导致网络弹性面临挑战。在这个动态过程中,载荷再分配行为是级联失效传播的核心对策,但尚未系统地研究多样化的机制。为了填补这些空白,本研究旨在开发一个针对级联故障的开创性弹性分析框架,以全面探索港口中断对航运网络弹性的影响。通过率先对港口中介性、权重和连通性对负载确定和目标选择的影响分析,应用了港口重要性评估方法作为负载再分配决策的基础。根据 2020 年至 2023 年的全球服务航线数据,GCSN 对全球 686 个港口连续级联故障的弹性通过三个指标进行量化。进行了情景分析,以模拟由 5 个历史港口中断事件(例如,COVID-19 港口封锁和 2024 年巴尔的摩港桥梁碰撞)触发的级联故障对网络弹性的影响。确定已确定的关键容量阈值对于有效增强系统的弹性和防止级联故障的可能性至关重要。此外,本研究还为全球航运业利益相关者提供了前沿视角。它提出了不同的策略和偏好,为港口当局的风险应对决策提供了可行的建议。 此外,本研究提供了经济原理和关键评估,有助于港口基础设施的战略维护、规划和增强,以防止不可预见的风险。