当前位置:
X-MOL 学术
›
Commun. Nonlinear Sci. Numer. Simul.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On a class of Schrödinger–Kirchhoff-double phase problems with convection term and variable exponents
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cnsns.2024.108453 Noureddine Moujane, Mohamed El Ouaarabi
Communications in Nonlinear Science and Numerical Simulation ( IF 3.4 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cnsns.2024.108453 Noureddine Moujane, Mohamed El Ouaarabi
In this paper, we investigate the existence of solutions for double-phase problems with variable exponents of the Kirchhoff–Schrödinger type, incorporating a convection term. By imposing certain assumptions and utilizing the topological degree for a class of ( S + ) -demicontinuous operators, along with the Galerkin method within the framework of Musielak–Orlicz–Sobolev spaces, we establish the existence of strong generalized solutions and weak solutions for the problems under consideration.
中文翻译:
关于一类具有对流项和可变指数的 Schrödinger-Kirchhoff 双相问题
在本文中,我们研究了具有 Kirchhoff-Schrödinger 型可变指数的双相问题的解,并结合了对流项。通过施加某些假设并利用一类 (S+) -半连续算子的拓扑度数,以及 Musielak-Orlicz-Sobolev 空间框架内的 Galerkin 方法,我们确定了所考虑的问题存在强广义解和弱解。
更新日期:2024-11-19
中文翻译:
关于一类具有对流项和可变指数的 Schrödinger-Kirchhoff 双相问题
在本文中,我们研究了具有 Kirchhoff-Schrödinger 型可变指数的双相问题的解,并结合了对流项。通过施加某些假设并利用一类 (S+) -半连续算子的拓扑度数,以及 Musielak-Orlicz-Sobolev 空间框架内的 Galerkin 方法,我们确定了所考虑的问题存在强广义解和弱解。