当前位置:
X-MOL 学术
›
Ind. Eng. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced Electrochemical Performance of Ultrahigh Nickel Layered Oxides via Nb-Doping and Radial Order Structural Modification
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-20 , DOI: 10.1021/acs.iecr.4c02822 Zeng Zeng, Yang Song, Zhen-Guo Wu, Ting Chen, Fuqiren Guo, Manqi Tang, Guokan Liu, Hongyu Lin, Changyan Hu, Xiaodong Guo
Industrial & Engineering Chemistry Research ( IF 3.8 ) Pub Date : 2024-11-20 , DOI: 10.1021/acs.iecr.4c02822 Zeng Zeng, Yang Song, Zhen-Guo Wu, Ting Chen, Fuqiren Guo, Manqi Tang, Guokan Liu, Hongyu Lin, Changyan Hu, Xiaodong Guo
The significance of high-nickel layered oxides in lithium-ion batteries is self-evident, with LiNi0.92Co0.05Mn0.03O2 (NCM9253) emerging as a promising candidate for high-energy-density batteries. Enhancing its cycling stability and rate capability is crucial for promoting the widespread adoption of electric vehicles and improving the user experience of portable devices. Here, employing density functional theory (DFT), it has been established that Nb preferentially incorporates into the bulk phase of the material. This discovery enables the rational design and preparation of NCM9253’s cathode via a dual-modification strategy involving Nb doping and structural modulation, with the goal of achieving Nb doping and radial ordering. Optimal Nb2O5 doping at 1 mol % resulted in a capacity retention of NCM9253 increasing from 71.2 to 102.6% after 100 cycles at 1C, with a capacity of 179.8 mAh·g–1. Additionally, the 1 mol % Nb-doped sample exhibited enhanced rate capability, delivering 172.5 mAh·g–1 at 5C compared to the pristine sample’s 146.2 mAh·g–1. Such pronounced electrochemical improvements are attributed to strengthened structural stability facilitated by Nb–O bonding and radial ordering. This study provides new insights and experimental evidence for the design of lithium-ion battery cathode materials, thereby advancing the theoretical and practical applications of electrochemical energy storage technologies.
中文翻译:
通过 Nb 掺杂和径向有序结构修饰增强超高镍层状氧化物的电化学性能
高镍层状氧化物在锂离子电池中的重要性是不言而喻的,LiNi0.92Co0.05Mn0.03O2 (NCM9253) 成为高能量密度电池的有前途的候选者。增强其骑行稳定性和速率能力对于促进电动汽车的广泛采用和改善便携式设备的用户体验至关重要。在这里,采用密度泛函理论 (DFT),已经确定 Nb 优先掺入材料的体相中。这一发现使得通过涉及 Nb 掺杂和结构调制的双重改性策略NCM9253 的阴极得到合理的设计和制备,以实现 Nb 掺杂和径向有序。在 1 mol % 下进行 1 mol % 的最佳 Nb2O5 掺杂导致在 1C 下循环 100 次后,容量NCM9253保持率从 71.2% 增加到 102.6%,容量为 179.8 mAh·g–1。此外,1 mol % Nb掺杂样品表现出更高的倍率能力,与原始样品的 146.2 mAh·g–1 相比,在 5C 下提供 172.5 mAh·g–1。如此显着的电化学改进归因于 Nb-O 键合和径向有序促进的增强结构稳定性。本研究为锂离子电池正极材料的设计提供了新的见解和实验证据,从而推进了电化学储能技术的理论和实际应用。
更新日期:2024-11-21
中文翻译:
通过 Nb 掺杂和径向有序结构修饰增强超高镍层状氧化物的电化学性能
高镍层状氧化物在锂离子电池中的重要性是不言而喻的,LiNi0.92Co0.05Mn0.03O2 (NCM9253) 成为高能量密度电池的有前途的候选者。增强其骑行稳定性和速率能力对于促进电动汽车的广泛采用和改善便携式设备的用户体验至关重要。在这里,采用密度泛函理论 (DFT),已经确定 Nb 优先掺入材料的体相中。这一发现使得通过涉及 Nb 掺杂和结构调制的双重改性策略NCM9253 的阴极得到合理的设计和制备,以实现 Nb 掺杂和径向有序。在 1 mol % 下进行 1 mol % 的最佳 Nb2O5 掺杂导致在 1C 下循环 100 次后,容量NCM9253保持率从 71.2% 增加到 102.6%,容量为 179.8 mAh·g–1。此外,1 mol % Nb掺杂样品表现出更高的倍率能力,与原始样品的 146.2 mAh·g–1 相比,在 5C 下提供 172.5 mAh·g–1。如此显着的电化学改进归因于 Nb-O 键合和径向有序促进的增强结构稳定性。本研究为锂离子电池正极材料的设计提供了新的见解和实验证据,从而推进了电化学储能技术的理论和实际应用。