当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Surface oxygen vacancies in amorphous Fe2O3 tailored nonlinear optical properties for ultrafast photonics
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-11-21 , DOI: 10.1016/j.jmat.2024.100976 Qingxi Zhao, Hongwei Chu, Zhongben Pan, Han Pan, Shengzhi Zhao, Dechun Li
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-11-21 , DOI: 10.1016/j.jmat.2024.100976 Qingxi Zhao, Hongwei Chu, Zhongben Pan, Han Pan, Shengzhi Zhao, Dechun Li
Fe2O3 nanomaterials, as one of the transition metal oxides (TMOs) materials, have garnered attention in ultrafast photonics due to their robust third-order nonlinearity, rapid carrier recovery time, high stability, broad absorption bandwidth and straightforward preparation methods. In order to further enhance the performance of Fe2O3 nanomaterials, oxygen vacancy defects were introduced in the process of preparing the Fe2O3 nanomaterials in this paper. By characterizing the nonlinear optical properties of the prepared Fe2O3 nanomaterials with different surface oxygen vacancy concentrations, we found that Fe2O3 nanomaterials with larger oxygen vacancy content have a deeper modulation depth and the larger third-order nonlinear coefficient. It also indicated that the incorporation of oxygen vacancy defects can significantly enhance the nonlinear optical properties of Fe2O3 nanomaterials. Furthermore, the ultrafast carrier dynamics of Fe2O3 materials with varying concentrations of oxygen vacancies were investigated using femtosecond-resolved transient absorption (TA) spectroscopy, elucidating the microscopic mechanism. Finally, we inserted Fe2O3-based saturable absorbers into Yb- and Er-doped fiber lasers. Noise-like mode-locking operation and multi-pulse mode-locking operation are realized at 1 μm in the Yb-doped fiber laser. Besides, the conventional soliton mode-locking operations with different central wavelengths are realized within 1.5 μm band in an Er-doped fiber laser.
中文翻译:
非晶态 Fe2O3 中的表面氧空位为超快光子学量身定制的非线性光学特性
Fe2O3 纳米材料作为过渡金属氧化物 (TMO) 材料之一,因其稳定的三阶非线性、快速的载流子恢复时间、高稳定性、宽吸收带宽和简单的制备方法而受到超快光子学的关注。为了进一步提高 Fe2O3 纳米材料的性能,本文在制备 Fe2O3 纳米材料的过程中引入了氧空位缺陷。通过表征所制备的不同表面氧空位浓度的 Fe2O3 纳米材料的非线性光学性能,我们发现氧空位含量较大的 Fe2O3 纳米材料具有更深的调制深度和较大的三阶非线性系数。它还表明,氧空位缺陷的掺入可以显着增强 Fe2O3 纳米材料的非线性光学性能。此外,使用飞秒分辨瞬态吸收 (TA) 光谱研究了具有不同氧空位浓度的 Fe2O3 材料的超快载流子动力学,阐明了微观机制。最后,我们将基于 Fe2O3 的可饱和吸收体插入掺镱和铒掺杂光纤激光器中。在 Yb 掺杂光纤激光器中,在 1 μm 处实现了类似噪声的锁模操作和多脉冲锁模操作。此外,在 Er 掺杂光纤激光器中,在 1.5 μm 波段内实现了具有不同中心波长的常规孤子锁模操作。
更新日期:2024-11-21
中文翻译:
非晶态 Fe2O3 中的表面氧空位为超快光子学量身定制的非线性光学特性
Fe2O3 纳米材料作为过渡金属氧化物 (TMO) 材料之一,因其稳定的三阶非线性、快速的载流子恢复时间、高稳定性、宽吸收带宽和简单的制备方法而受到超快光子学的关注。为了进一步提高 Fe2O3 纳米材料的性能,本文在制备 Fe2O3 纳米材料的过程中引入了氧空位缺陷。通过表征所制备的不同表面氧空位浓度的 Fe2O3 纳米材料的非线性光学性能,我们发现氧空位含量较大的 Fe2O3 纳米材料具有更深的调制深度和较大的三阶非线性系数。它还表明,氧空位缺陷的掺入可以显着增强 Fe2O3 纳米材料的非线性光学性能。此外,使用飞秒分辨瞬态吸收 (TA) 光谱研究了具有不同氧空位浓度的 Fe2O3 材料的超快载流子动力学,阐明了微观机制。最后,我们将基于 Fe2O3 的可饱和吸收体插入掺镱和铒掺杂光纤激光器中。在 Yb 掺杂光纤激光器中,在 1 μm 处实现了类似噪声的锁模操作和多脉冲锁模操作。此外,在 Er 掺杂光纤激光器中,在 1.5 μm 波段内实现了具有不同中心波长的常规孤子锁模操作。