当前位置:
X-MOL 学术
›
Environ. Sci.: Nano
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimizing oxygen vacancy concentration and electronic transport processes in a MnxCo/CeO2 nanoreactor: regulation mechanism of the radical to non-radical pathway
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-11-21 , DOI: 10.1039/d4en00892h Hailan Qin, Jiahao Wang, Siyuan Di, Yunkang Liu, Pin Chen, Min Liu, Qiuyue Zhang, Shukui Zhu
Environmental Science: Nano ( IF 5.8 ) Pub Date : 2024-11-21 , DOI: 10.1039/d4en00892h Hailan Qin, Jiahao Wang, Siyuan Di, Yunkang Liu, Pin Chen, Min Liu, Qiuyue Zhang, Shukui Zhu
Enhancing the efficiency of electron transfer and augmenting the utilization rate of peroxymonosulfate (PMS) pose challenges for advanced oxidation processes (AOPs). A high-performance bimetallic-doped catalyst (MnCo/CeO2) with an appropriate concentration of oxygen vacancies (OVs) was successfully designed using a straightforward synthesis strategy. It primarily activates PMS through non-radical pathways. Systemic characterization, experiments, and theoretical calculations have demonstrated that reasonable OVs and the Mn/Co bimetallic doping strategy effectively modulated the surface spatial electron structure and greatly improved interfacial electron transfer processes (ETP). Ultimately, MnCo/CeO2 exhibits a remarkable ciprofloxacin (CIP) removal efficiency of 93.71% (k = 0.03501 min−1) within 50 min (after 5 cycles, 89%), which is 5.03 times faster than that of traditional CeO2 (k = 0.00696 min−1), and the possible degradation pathway as well as toxicity of intermediate products were identified using LC-MS, Fukui function analysis, and toxicity evaluation. This work proposes a feasible strategy for designing bimetallic-doped metallic oxide catalysts, which have great application potential for the degradation of organic contaminants under actual harsh environmental conditions.
中文翻译:
优化 MnxCo/CeO2 纳米反应器中的氧空位浓度和电子传输过程:自由基到非自由基途径的调控机制
提高电子转移效率和提高过氧一硫酸盐 (PMS) 的利用率对高级氧化过程 (AOP) 提出了挑战。使用简单的合成策略成功设计了具有适当浓度氧空位 (OVs) 的高性能双金属掺杂催化剂 (MnCo/CeO2)。它主要通过非自由基途径激活 PMS。系统表征、实验和理论计算表明,合理的 OVs 和 Mn/Co 双金属掺杂策略有效地调节了表面空间电子结构,并大大改善了界面电子转移过程 (ETP)。最终,MnCo/CeO2 在 50 分钟内表现出 93.71% (k = 0.03501 min-1) 的显着环丙沙星 (CIP) 去除效率(5 次循环后,89%),比传统 CeO2 快 5.03 倍 (k = 0.00696 min-1),并使用 LC-MS、Fukui 函数分析和毒性评价鉴定可能的降解途径以及中间产物的毒性。本工作提出了一种设计双金属掺杂金属氧化物催化剂的可行策略,该催化剂在实际恶劣环境条件下降解有机污染物具有很大的应用潜力。
更新日期:2024-11-21
中文翻译:
优化 MnxCo/CeO2 纳米反应器中的氧空位浓度和电子传输过程:自由基到非自由基途径的调控机制
提高电子转移效率和提高过氧一硫酸盐 (PMS) 的利用率对高级氧化过程 (AOP) 提出了挑战。使用简单的合成策略成功设计了具有适当浓度氧空位 (OVs) 的高性能双金属掺杂催化剂 (MnCo/CeO2)。它主要通过非自由基途径激活 PMS。系统表征、实验和理论计算表明,合理的 OVs 和 Mn/Co 双金属掺杂策略有效地调节了表面空间电子结构,并大大改善了界面电子转移过程 (ETP)。最终,MnCo/CeO2 在 50 分钟内表现出 93.71% (k = 0.03501 min-1) 的显着环丙沙星 (CIP) 去除效率(5 次循环后,89%),比传统 CeO2 快 5.03 倍 (k = 0.00696 min-1),并使用 LC-MS、Fukui 函数分析和毒性评价鉴定可能的降解途径以及中间产物的毒性。本工作提出了一种设计双金属掺杂金属氧化物催化剂的可行策略,该催化剂在实际恶劣环境条件下降解有机污染物具有很大的应用潜力。