当前位置:
X-MOL 学术
›
Acc. Chem. Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Renewable Fuels and Chemical Recycling of Plastics via Hydrothermal Liquefaction
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-11-20 , DOI: 10.1021/acs.accounts.4c00524 Phillip E. Savage
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2024-11-20 , DOI: 10.1021/acs.accounts.4c00524 Phillip E. Savage
Hydrothermal liquefaction (HTL) converts a wide range of biomass feedstocks into a renewable bio-oil via reactions in hot, compressed water. Other products that form partition into the gas, aqueous, or solid phases. The reactions taking place during HTL include hydrolysis, decarboxylation, condensations, additions, deamination, and dehydration. Bio-oil production from HTL has been demonstrated for many renewable materials including microalgae, macroalgae, sludge from water treatment, food waste, agricultural residues, bacteria, yeast, and a wide variety of lignocellulosic materials. HTL of whole biomass is an energy densification process as it generally recovers about 70–80% of chemical energy in an oil product that is just 20–50 wt % of the mass of the original feedstock. The oil is typically rich in oxygen (10 -20 wt %) and also in nitrogen (about 5 wt %), if the biomass contains protein. The oil also contains metals such as iron. Therefore, an upgrading and/or refining process would be required to convert the crude bio-oil to a finished fuel. Each biochemical component in biomass (e.g., polysaccharides, protein, lipids, lignin) contributes different proportions of its initial mass to biocrude. Lipids provide the highest biocrude yields whereas polysaccharides and lignin provide the lowest. Kinetics models have been developed that incorporate different reactivities for the different biochemical components. These models, which are effective in correlating and predicting the yields of biocrude and other product fractions from HTL, can be used in technoeconomic analysis and life-cycle assessments to advance commercial adoption of the technology.
中文翻译:
可再生燃料和通过水热液化法对塑料进行化学回收
水热液化 (HTL) 通过在热压缩水中的反应将各种生物质原料转化为可再生的生物油。其他形成气相、水相或固相的产物。HTL 过程中发生的反应包括水解、脱羧、缩合、加成、脱氨和脱水。HTL 生产生物油已被证明可用于许多可再生材料,包括微藻、大型藻类、水处理污泥、食物垃圾、农业残留物、细菌、酵母和各种木质纤维素材料。全生物质的 HTL 是一种能量致密化过程,因为它通常回收石油产品中约 70-80% 的化学能,而石油产品仅为原始原料质量的 20-50 wt%。如果生物质含有蛋白质,则油通常富含氧气 (10 -20 wt %) 和氮 (约 5 wt %)。该油还含有铁等金属。因此,需要进行升级和/或精炼过程,将粗生物油转化为成品燃料。生物质中的每种生化成分(例如多糖、蛋白质、脂质、木质素)对其生物原油的初始质量的贡献比例不同。脂质的生物粗得率最高,而多糖和木质素的得率最低。已经开发了动力学模型,其中包含不同生化成分的不同反应性。这些模型可有效关联和预测 HTL 中生物原油和其他产品馏分的产量,可用于技术经济分析和生命周期评估,以推动该技术的商业采用。
更新日期:2024-11-20
中文翻译:
可再生燃料和通过水热液化法对塑料进行化学回收
水热液化 (HTL) 通过在热压缩水中的反应将各种生物质原料转化为可再生的生物油。其他形成气相、水相或固相的产物。HTL 过程中发生的反应包括水解、脱羧、缩合、加成、脱氨和脱水。HTL 生产生物油已被证明可用于许多可再生材料,包括微藻、大型藻类、水处理污泥、食物垃圾、农业残留物、细菌、酵母和各种木质纤维素材料。全生物质的 HTL 是一种能量致密化过程,因为它通常回收石油产品中约 70-80% 的化学能,而石油产品仅为原始原料质量的 20-50 wt%。如果生物质含有蛋白质,则油通常富含氧气 (10 -20 wt %) 和氮 (约 5 wt %)。该油还含有铁等金属。因此,需要进行升级和/或精炼过程,将粗生物油转化为成品燃料。生物质中的每种生化成分(例如多糖、蛋白质、脂质、木质素)对其生物原油的初始质量的贡献比例不同。脂质的生物粗得率最高,而多糖和木质素的得率最低。已经开发了动力学模型,其中包含不同生化成分的不同反应性。这些模型可有效关联和预测 HTL 中生物原油和其他产品馏分的产量,可用于技术经济分析和生命周期评估,以推动该技术的商业采用。