当前位置: X-MOL 学术World J. Emerg. Surg. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new technology for medical and surgical data organisation: the WSES-WJES Decentralised Knowledge Graph
World Journal of Emergency Surgery ( IF 6.0 ) Pub Date : 2024-11-20 , DOI: 10.1186/s13017-024-00563-6
Andrey A. Litvin, Sophiya B. Rumovskaya, Belinda De Simone, Lucienne Kasongo, Massimo Sartelli, Federico Coccolini, Luca Ansaloni, Ernest E. Moore, Walter Biffl, Fausto Catena

The quality of Big Data analysis in medicine and surgery heavily depends on the methods used for clinical data collection, organization, and storage. The Knowledge Graph (KG) represents knowledge through a semantic model, enhancing connections between diverse and complex information. While it can improve the quality of health data collection, it has limitations that can be addressed by the Decentralized (blockchain-powered) Knowledge Graph (DKG). We report our experience in developing a DKG to organize data and knowledge in the field of emergency surgery. The authors leveraged the cyb.ai protocol, a decentralized protocol within the Cosmos network, to develop the Emergency Surgery DKG. They populated the DKG with relevant information using publications from the World Society of Emergency Surgery (WSES) featured in the World Journal of Emergency Surgery (WJES). The result was the Decentralized Knowledge Graph (DKG) for the WSES-WJES bibliography. Utilizing a DKG enables more effective structuring and organization of medical knowledge. This facilitates a deeper understanding of the interrelationships between various aspects of medicine and surgery, ultimately enhancing the diagnosis and treatment of different diseases. The system’s design aims to be inclusive and user-friendly, providing access to high-quality surgical knowledge for healthcare providers worldwide, regardless of their technological capabilities or geographical location. As the DKG evolves, ongoing attention to user feedback, regulatory frameworks, and ethical considerations will be critical to its long-term success and global impact in the surgical field.

中文翻译:


用于医疗和外科数据组织的新技术:WSES-WJES 去中心化知识图谱



医学和外科大数据分析的质量在很大程度上取决于用于临床数据收集、组织和存储的方法。知识图谱 (KG) 通过语义模型表示知识,增强多样化和复杂信息之间的联系。虽然它可以提高健康数据收集的质量,但它也有局限性,去中心化(区块链支持)知识图谱 (DKG) 可以解决。我们报告了我们开发 DKG 以组织急诊手术领域的数据和知识的经验。作者利用 cyb.ai 协议(Cosmos 网络内的去中心化协议)开发了紧急手术 DKG。他们使用世界急诊外科学会 (WSES) 的出版物填充了相关信息,这些出版物刊登在世界急诊外科杂志 (WJES) 上。结果是 WSES-WJES 书目的去中心化知识图谱 (DKG)。利用 DKG 可以更有效地构建和组织医学知识。这有助于更深入地了解医学和外科各个方面之间的相互关系,最终加强不同疾病的诊断和治疗。该系统的设计旨在具有包容性和用户友好性,为全球医疗保健提供者提供获得高质量手术知识的机会,无论他们的技术能力或地理位置如何。随着 DKG 的发展,对用户反馈、监管框架和道德考虑的持续关注对于其在外科领域的长期成功和全球影响至关重要。
更新日期:2024-11-20
down
wechat
bug