当前位置: X-MOL 学术Int. J. Comput. Vis. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CS-CoLBP: Cross-Scale Co-occurrence Local Binary Pattern for Image Classification
International Journal of Computer Vision ( IF 11.6 ) Pub Date : 2024-11-19 , DOI: 10.1007/s11263-024-02297-z
Bin Xiao, Danyu Shi, Xiuli Bi, Weisheng Li, Xinbo Gao

The local binary pattern (LBP) is an effective feature, describing the size relationship between the neighboring pixels and the current pixel. While individual LBP-based methods yield good results, co-occurrence LBP-based methods exhibit a better ability to extract structural information. However, most of the co-occurrence LBP-based methods excel mainly in dealing with rotated images, exhibiting limitations in preserving performance for scaled images. To address the issue, a cross-scale co-occurrence LBP (CS-CoLBP) is proposed. Initially, we construct an LBP co-occurrence space to capture robust structural features by simulating scale transformation. Subsequently, we use Cross-Scale Co-occurrence pairs (CS-Co pairs) to extract the structural features, keeping robust descriptions even in the presence of scaling. Finally, we refine these CS-Co pairs through Rotation Consistency Adjustment (RCA) to bolster their rotation invariance, thereby making the proposed CS-CoLBP as powerful as existing co-occurrence LBP-based methods for rotated image description. While keeping the desired geometric invariance, the proposed CS-CoLBP maintains a modest feature dimension. Empirical evaluations across several datasets demonstrate that CS-CoLBP outperforms the existing state-of-the-art LBP-based methods even in the presence of geometric transformations and image manipulations.



中文翻译:


CS-CoLBP:用于图像分类的跨尺度共现局部二元模式



局部二进制模式 (LBP) 是一种有效的功能,用于描述相邻像素和当前像素之间的大小关系。虽然基于单个 LBP 的方法会产生良好的结果,但基于 LBP 的共现方法表现出更好的提取结构信息的能力。然而,大多数基于共现 LBP 的方法主要擅长处理旋转图像,在保持缩放图像的性能方面表现出局限性。为了解决这个问题,提出了一种跨尺度共生 LBP (CS-CoLBP)。最初,我们构建了一个 LBP 共现空间,通过模拟尺度变换来捕捉稳健的结构特征。随后,我们使用跨尺度共现对 (CS-Co 对) 来提取结构特征,即使在存在缩放的情况下也能保持稳健的描述。最后,我们通过旋转一致性调整 (RCA) 来改进这些 CS-Co 对,以增强它们的旋转不变性,从而使所提出的 CS-CoLBP 与现有的基于共现 LBP 的旋转图像描述方法一样强大。在保持所需的几何不变性的同时,所提出的 CS-CoLBP 保持了适度的特征维度。跨多个数据集的实证评估表明,即使在存在几何变换和图像处理的情况下,CS-CoLBP 也优于现有的最先进的基于 LBP 的方法。

更新日期:2024-11-20
down
wechat
bug