当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Reconstruction Effects of Layered Vanadium Oxides by Nanoengineering and Preintercalation for High Zinc-Ion Storage Performance
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-11-20 , DOI: 10.1021/acsami.4c11392 Guolong Wang, Boyuan Guan, Jingqi Wang, Jiale Song, Jiamei Liu, Xiaowei Shi, Zehua Zhao, Yuxi Tai, Yongjian Wang, Yanhuai Li, Zhongxiao Song, Lei Li
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-11-20 , DOI: 10.1021/acsami.4c11392 Guolong Wang, Boyuan Guan, Jingqi Wang, Jiale Song, Jiamei Liu, Xiaowei Shi, Zehua Zhao, Yuxi Tai, Yongjian Wang, Yanhuai Li, Zhongxiao Song, Lei Li
Layered vanadium oxides with preintercalated cations have been recognized to be among the most promising cathode materials for aqueous zinc-ion batteries (AZIBs). However, their underlying structure–property relationships are still poorly understood owing to the lack of systematic comparison. Herein, a series of layered V2O5 nanobelts including single-layer α-V2O5 and bilayer hydrated δ-V2O5 with preintercalation (MxV2O5·nH2O, M = Mg2+, Ca2+, or Ba2+) with similar morphology are fabricated through a controllable synthesis protocol as models. The side-by-side comparisons of the energy storage performances and related kinetics in these samples decouple the reconstruction effects of nanostructuring and preintercalation. Results demonstrate that nanostructuring tends to improve the capacity and rate retention of α-V2O5 but leaves the rapid capacity decay unsettled, whereas preintercalation can convert α-V2O5 into δ-V2O5 with simultaneously enhanced discharge capacity, rate retention, and cycling stability. Regulation of the cations’ species/content and their associated structural water appears to accelerate the electron/ion transport in V2O5 and stabilize the framework of V2O5, thereby boosting the energy storage properties. The optimized sample with a stoichiometric formula of Mg0.255V2O5·0.809H2O exhibits outstanding comprehensive energy storage performance that is comparable to the most advanced vanadium oxide hydrate cathodes reported in the literature. The quantification and understanding of the reconstruction effects of nanostructuring and preintercalation in this work offer insights into the structural engineering of advanced cathodes for AZIBs and beyond.
中文翻译:
纳米工程和预嵌入重构层状钒氧化物对高锌离子存储性能的影响
具有预插层阳离子的层状钒氧化物被认为是水系锌离子电池 (AZIB) 最有前途的正极材料之一。然而,由于缺乏系统比较,它们的底层结构-属性关系仍然知之甚少。在此,一系列层状 V2O5 纳米带,包括单层 α-V2O5 和双层水合 δ-V2O5 预插层 (MxV2O5·nH2O、M = Mg2+、Ca2+或 Ba2+)通过可控合成方案制备为模型。这些样品中储能性能和相关动力学的并排比较消除了纳米结构和预插层的重建效应。结果表明,纳米结构倾向于提高 α-V2O5 的容量和倍率保持率,但使容量的快速衰减未解决,而预插层可以将 α-V2O5 转换为 δ-V2O5,同时增强放电容量、倍率保持和循环稳定性。对阳离子的种类/含量及其相关结构水的调节似乎加速了 V2O5 中的电子/离子传输并稳定了 V2O5 的框架,从而提高了储能性能。化学计量公式为 Mg0.255V2O5·0.809H2O 的优化样品表现出出色的综合储能性能,可与文献中报道的最先进的氧化钒水合物阴极相媲美。 这项工作中对纳米结构和预嵌入的重建效应的量化和理解为 AZIB 及其他高级阴极的结构工程提供了见解。
更新日期:2024-11-20
中文翻译:
纳米工程和预嵌入重构层状钒氧化物对高锌离子存储性能的影响
具有预插层阳离子的层状钒氧化物被认为是水系锌离子电池 (AZIB) 最有前途的正极材料之一。然而,由于缺乏系统比较,它们的底层结构-属性关系仍然知之甚少。在此,一系列层状 V2O5 纳米带,包括单层 α-V2O5 和双层水合 δ-V2O5 预插层 (MxV2O5·nH2O、M = Mg2+、Ca2+或 Ba2+)通过可控合成方案制备为模型。这些样品中储能性能和相关动力学的并排比较消除了纳米结构和预插层的重建效应。结果表明,纳米结构倾向于提高 α-V2O5 的容量和倍率保持率,但使容量的快速衰减未解决,而预插层可以将 α-V2O5 转换为 δ-V2O5,同时增强放电容量、倍率保持和循环稳定性。对阳离子的种类/含量及其相关结构水的调节似乎加速了 V2O5 中的电子/离子传输并稳定了 V2O5 的框架,从而提高了储能性能。化学计量公式为 Mg0.255V2O5·0.809H2O 的优化样品表现出出色的综合储能性能,可与文献中报道的最先进的氧化钒水合物阴极相媲美。 这项工作中对纳米结构和预嵌入的重建效应的量化和理解为 AZIB 及其他高级阴极的结构工程提供了见解。