当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CoFe-LDH nanocage derived from MOF coupled with CNTs as cathode catalyst for Li-O2 batteries
Electrochimica Acta ( IF 5.5 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.electacta.2024.145384
Yongming Zhu, Shan Zhi, Bangqi Wan

Li-O2 batteries(LOBs)have garnered substantial interest owing to their exceptional energy density. Nevertheless, the slow kinetics of discharge and recharge significantly hinder their commercial application. Herein, a one-step hydrothermal process was employed to anchor metal-organic framework (MOF)-derived CoFe-layered double hydroxides (CoFe-LDH) hollow nanocages onto carbon nanotubes, thereby improving the electrochemical efficiency of LOBs. The synthesized nanocomposite resulted in an increased specific surface area, providing more catalytically active sites and rapid diffusion pathways for lithium ions and oxygen. Owing to a synergistic effect, the CoFe-LDH@CNTs electrode, when used as a cathode in LOBs, exhibited a high initial discharge capacity (32.8 Ah g−1 at 500 mA g−1) and maintained 176 stable cycles at 500 mA g−1 with a limited capacity of 500 mAh g−1. Furthermore, the optimized d-orbital electron structure and d-band center were confirmed by density functional theory (DFT) calculations, reducing the reaction barrier and improving reactant adsorption, thus accelerating the kinetics of the catalytic reaction. This study presents an innovative strategy for designing electrocatalysts for LOBs by integrating bimetallic MOF-derived materials with carbon-based substrates.

中文翻译:


源自 MOF 的 CoFe-LDH 纳米笼与 CNT 偶联作为 Li-O2 电池的阴极催化剂



Li-O2 电池 (LOB) 因其特殊的能量密度而引起了人们的极大兴趣。然而,放电和充电的缓慢动力学显着阻碍了其商业应用。在此,采用一步水热工艺将金属有机框架 (MOF) 衍生的 CoFe 层状双氢氧化物 (CoFe-LDH) 空心纳米笼锚定在碳纳米管上,从而提高 LOBs 的电化学效率。合成的纳米复合材料导致比表面积增加,为锂离子和氧提供了更多的催化活性位点和快速扩散途径。由于协同效应,当 CoFe-LDH@CNTs 电极用作 LOB 中的阴极时,表现出较高的初始放电容量(32.8 Ah g-1,500 mA g-1),并在 500 mA g-1 下保持 176 次稳定循环,容量有限为 500 mAh g-1。此外,通过密度泛函理论 (DFT) 计算证实了优化的 d 轨道电子结构和 d 带中心,降低了反应势垒并提高了反应物吸附,从而加速了催化反应的动力学。本研究提出了一种通过将双金属 MOF 衍生材料与碳基衬底相结合来设计 LOBs 电催化剂的创新策略。
更新日期:2024-11-19
down
wechat
bug