当前位置:
X-MOL 学术
›
Chem. Eng. Sci.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Confinement strategy construction (0D/3D)MoSe2@HrGO hybrid for enhancing reaction kinetics in aqueous zinc-tellurium batteries
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.ces.2024.120961 Zhaohua Jiang, Jinjin Wen, Huiting Xu, Yufen Zhang, Haonan Zhai, Zhijie Cui, Honghai Wang, Junjie Qi, Wen Liu, Jiapeng Liu
Chemical Engineering Science ( IF 4.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.ces.2024.120961 Zhaohua Jiang, Jinjin Wen, Huiting Xu, Yufen Zhang, Haonan Zhai, Zhijie Cui, Honghai Wang, Junjie Qi, Wen Liu, Jiapeng Liu
Aqueous zinc-tellurium (Zn-Te) batteries based on conversion reactions between Zn and Te have sparked significant interest due to their cost-effectiveness, high theoretical specific capacity and outstanding safety features. Nevertheless, the sluggish kinetics pose a barrier to the advancement of aqueous Zn-Te batteries. In this study, zero-dimension (0D) nanodots and three-dimensional (3D) nanoflowers molybdenum diselenide (MoSe2) are in situ grown on the holey reduced graphene oxide (HrGO) by a confinement synthesis strategy. Benefiting from the simultaneous presence of (0D/3D)MoSe2, excellent conductivity of holey reduced graphene oxide and unique hierarchical structure, the (0D/3D)MoSe2@HrGO hybrid greatly promotes the redox kinetics between Zn and Te conversion. Consequently, the constructed aqueous Zn-Te batteries equipped with a Te@(0D/3D)MoSe2@HrGO cathode demonstrate remarkable specific capacity (reaching 505 mAh/g at a current density of 0.15 A/g) along with outstanding long-term cycling stability. Additionally, the underlying conversion mechanism has been meticulously explored through extensive analytical techniques. This research introduces an innovative approach to boost the electrochemical performance of aqueous zinc-tellurium batteries.
中文翻译:
限制策略构建 (0D/3D)MoSe2@HrGO 复合材料增强水系锌碲电池反应动力学
基于 Zn 和 Te 之间转换反应的锌碲 (Zn-Te) 水系电池因其成本效益、高理论比容量和出色的安全性而引起了人们的极大兴趣。然而,缓慢的动力学对水性 Zn-Te 电池的发展构成了障碍。在这项研究中,零维 (0D) 纳米点和三维 (3D) 纳米花二硒化钼 (MoSe2) 通过限制合成策略在有孔还原的氧化石墨烯 (HrGO) 上原位生长。得益于 (0D/3D)MoSe2 同时存在、多孔还原氧化石墨烯的优异导电性和独特的分层结构,(0D/3D)MoSe2@HrGO 杂化物极大地促进了 Zn 和 Te 转化之间的氧化还原动力学。因此,配备 Te@(0D/3D)MoSe2@HrGO 正极构建的水性 Zn-Te 电池表现出卓越的比容量(在 0.15 A/g 的电流密度下达到 505 mAh/g)以及出色的长期循环稳定性。此外,通过广泛的分析技术,我们仔细探索了潜在的转换机制。这项研究引入了一种创新方法来提高水性锌碲电池的电化学性能。
更新日期:2024-11-20
中文翻译:
限制策略构建 (0D/3D)MoSe2@HrGO 复合材料增强水系锌碲电池反应动力学
基于 Zn 和 Te 之间转换反应的锌碲 (Zn-Te) 水系电池因其成本效益、高理论比容量和出色的安全性而引起了人们的极大兴趣。然而,缓慢的动力学对水性 Zn-Te 电池的发展构成了障碍。在这项研究中,零维 (0D) 纳米点和三维 (3D) 纳米花二硒化钼 (MoSe2) 通过限制合成策略在有孔还原的氧化石墨烯 (HrGO) 上原位生长。得益于 (0D/3D)MoSe2 同时存在、多孔还原氧化石墨烯的优异导电性和独特的分层结构,(0D/3D)MoSe2@HrGO 杂化物极大地促进了 Zn 和 Te 转化之间的氧化还原动力学。因此,配备 Te@(0D/3D)MoSe2@HrGO 正极构建的水性 Zn-Te 电池表现出卓越的比容量(在 0.15 A/g 的电流密度下达到 505 mAh/g)以及出色的长期循环稳定性。此外,通过广泛的分析技术,我们仔细探索了潜在的转换机制。这项研究引入了一种创新方法来提高水性锌碲电池的电化学性能。