当前位置:
X-MOL 学术
›
Sep. Purif. Technol.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Engineering lattice strain in bimetallic nanostructures to modulate peroxymonosulfate activation pathways
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.seppur.2024.130612 Deying Lin, Junjun Li, Ronghao Wu, Mengqiao Wu, Yongfu Li, Yanjiang Cai, Haifeng Zeng, Hai Xiang, Cheng Fu, Bing Yu
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.seppur.2024.130612 Deying Lin, Junjun Li, Ronghao Wu, Mengqiao Wu, Yongfu Li, Yanjiang Cai, Haifeng Zeng, Hai Xiang, Cheng Fu, Bing Yu
While strain engineering has proven to be an effective strategy for enhancing catalytic activity across various applications, the specific role of lattice strain in the activation of peroxymonosulfate (PMS) remains unexplored. Here, bimetallic oxide heterojunctions were employed to adjust the level of strain by controlling the crystallinity of one metal oxide within the heterojunction. As a proof-of-concept, a PMS activator was designed, combining CoO as the activator and less crystalline MnO2 as the strain modulator. This catalyst demonstrated a remarkable 36.78-fold improvement in the sulfamethoxazole degradation efficacy compared to its low-strain counterpart employing highly crystalline MnO2 , with the kinetic constant increasing from 0.009 to 0.340 min-1 . Remarkably, the catalyst demonstrated a high stability, retaining 95 % of its initial efficacy even after 565 cycles. Theoretical simulations and experimental findings indicate that the synergy between MnO2 and CoO not only suppresses Co leaching but also fine-tunes the electronic structure of CoO via strain engineering, resulting in weakened PMS adsorption, enhanced electron transfer, elongated O–O bond lengths, and the conversion of PMS to radicals. Overall, this study introduces a new approach to designing highly efficient bimetallic catalysts tailored for specific advanced oxidative processes in pollutant degradation.
中文翻译:
在双金属纳米结构中设计晶格应变以调节过氧一硫酸盐活化途径
虽然菌株工程已被证明是增强各种应用中催化活性的有效策略,但晶格应变在过氧化一硫酸盐 (PMS) 激活中的具体作用仍未得到探索。在这里,采用双金属氧化物异质结通过控制异质结内一种金属氧化物的结晶度来调整应变水平。作为概念验证,设计了一种 PMS 激活剂,将 CoO 作为激活剂,将结晶度较低的 MnO2 作为应变调节剂相结合。与采用高结晶 MnO2 的低应变催化剂相比,该催化剂的磺胺甲噁唑降解效率显著提高了 36.78 倍,动力学常数从 0.009 增加到 0.340 min-1。值得注意的是,该催化剂表现出高稳定性,即使在 565 次循环后仍能保持 95% 的初始功效。理论模拟和实验结果表明,MnO2 和 CoO 之间的协同作用不仅抑制了 Co 浸出,还通过应变工程微调了 CoO 的电子结构,导致 PMS 吸附减弱,电子转移增强,O-O 键长度延长,PMS 转化为自由基。总体而言,本研究引入了一种设计高效双金属催化剂的新方法,该方法专为污染物降解中的特定高级氧化过程量身定制。
更新日期:2024-11-19
中文翻译:
在双金属纳米结构中设计晶格应变以调节过氧一硫酸盐活化途径
虽然菌株工程已被证明是增强各种应用中催化活性的有效策略,但晶格应变在过氧化一硫酸盐 (PMS) 激活中的具体作用仍未得到探索。在这里,采用双金属氧化物异质结通过控制异质结内一种金属氧化物的结晶度来调整应变水平。作为概念验证,设计了一种 PMS 激活剂,将 CoO 作为激活剂,将结晶度较低的 MnO2 作为应变调节剂相结合。与采用高结晶 MnO2 的低应变催化剂相比,该催化剂的磺胺甲噁唑降解效率显著提高了 36.78 倍,动力学常数从 0.009 增加到 0.340 min-1。值得注意的是,该催化剂表现出高稳定性,即使在 565 次循环后仍能保持 95% 的初始功效。理论模拟和实验结果表明,MnO2 和 CoO 之间的协同作用不仅抑制了 Co 浸出,还通过应变工程微调了 CoO 的电子结构,导致 PMS 吸附减弱,电子转移增强,O-O 键长度延长,PMS 转化为自由基。总体而言,本研究引入了一种设计高效双金属催化剂的新方法,该方法专为污染物降解中的特定高级氧化过程量身定制。