当前位置:
X-MOL 学术
›
Nano Lett.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Self-Template Construction of Hierarchical Bi@C Microspheres as Competitive Wide Temperature-Operating Anodes for Superior Sodium-Ion Batteries
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-19 , DOI: 10.1021/acs.nanolett.4c03453 Yan Wang, Yongxin Kuang, Jie Cui, Xijun Xu, Fangkun Li, Yiwen Wu, Zhaoyu Sun, Weizhen Fan, Yanxue Wu, Jingwei Zhao, Zhiyuan Zeng, Jun Liu, Yanping Huo
Nano Letters ( IF 9.6 ) Pub Date : 2024-11-19 , DOI: 10.1021/acs.nanolett.4c03453 Yan Wang, Yongxin Kuang, Jie Cui, Xijun Xu, Fangkun Li, Yiwen Wu, Zhaoyu Sun, Weizhen Fan, Yanxue Wu, Jingwei Zhao, Zhiyuan Zeng, Jun Liu, Yanping Huo
Huge volume changes of bismuth (Bi) anode leading to rapid capacity hindered its practical application in sodium-ion batteries (SIBs). Herein, porous Bi@C (P-Bi@C) microspheres consisting of self-assembled Bi nanosheets and carbon shells were constructed via a hydrothermal method combined with a carbothermic reduction. The optimized P-Bi@C-700 (annealed at 700 °C) demonstrates 359.8 mAh g–1 after 1500 cycles at 1 A g–1. In situ/ex situ characterization and density functional theory calculations verified that this P-Bi@C-700 relieves the volume expansion, facilitates Na+/electron transport, and possesses an alloying-type storage mechanism. Notably, P-Bi@C-700 also achieved 360.8 and 370.3 mAh g–1 at 0.05 A g–1 under 0 and 60 °C conditions, respectively. Na3V2(PO4)3//P-Bi@C-700 exhibits a capacity of 359.7 mAh g–1 after 260 cycles at 1 A g–1. These hierarchical microspheres effectively moderate the volume fluctuation, preserving structural reversibility, thereby achieving superior Na+ storage performance. This self-template strategy provides insight into designing high-volumetric capacity alloy-based anodes for SIBs.
中文翻译:
分层Bi@C微球的自模板构建作为优质钠离子电池的有竞争力的宽温工作阳极
铋 (Bi) 负极的巨大体积变化导致容量过快,阻碍了其在钠离子电池 (SIB) 中的实际应用。在此,通过水热法结合碳热还原构建了由自组装 Bi 纳米片和碳壳组成的多孔 Bi@C (P-Bi@C) 微球。优化的 P-Bi@C-700(在 700 °C 下退火)在 1 A g–1 下循环 1500 次后表现出 359.8 mAh g–1。原位/非原位表征和密度泛函理论计算验证了这种 P-Bi@C-700 减轻了体积膨胀,促进了 Na+/电子传递,并具有合金型存储机制。值得注意的是,在 0 °C 和 60 °C 条件下,P-Bi@C-700 在 0.05 A g-1 下也分别达到了 360.8 mAh g-1 和 370.3 mAh g-1。Na3V2(PO4)3P-Bi@C-700 在 1 A g–1 下循环 260 次后,容量为 359.7 mAh g–1。这些分层微球有效地调节了体积波动,保持了结构的可逆性,从而实现了卓越的 Na+ 储存性能。这种自模板策略为为 SIB 设计高体积容量合金基阳极提供了见解。
更新日期:2024-11-20
中文翻译:
分层Bi@C微球的自模板构建作为优质钠离子电池的有竞争力的宽温工作阳极
铋 (Bi) 负极的巨大体积变化导致容量过快,阻碍了其在钠离子电池 (SIB) 中的实际应用。在此,通过水热法结合碳热还原构建了由自组装 Bi 纳米片和碳壳组成的多孔 Bi@C (P-Bi@C) 微球。优化的 P-Bi@C-700(在 700 °C 下退火)在 1 A g–1 下循环 1500 次后表现出 359.8 mAh g–1。原位/非原位表征和密度泛函理论计算验证了这种 P-Bi@C-700 减轻了体积膨胀,促进了 Na+/电子传递,并具有合金型存储机制。值得注意的是,在 0 °C 和 60 °C 条件下,P-Bi@C-700 在 0.05 A g-1 下也分别达到了 360.8 mAh g-1 和 370.3 mAh g-1。Na3V2(PO4)3P-Bi@C-700 在 1 A g–1 下循环 260 次后,容量为 359.7 mAh g–1。这些分层微球有效地调节了体积波动,保持了结构的可逆性,从而实现了卓越的 Na+ 储存性能。这种自模板策略为为 SIB 设计高体积容量合金基阳极提供了见解。