当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoanode/Electrolyte Interface Modification for Efficient Hydrogen Evolution in Cu2SnS3 Dots-Sensitized Solar PEC Cells
Langmuir ( IF 3.7 ) Pub Date : 2024-11-19 , DOI: 10.1021/acs.langmuir.4c03364
Ao Chen, Chuang Chen, Jinshan Cao, Xiufen Chen, Shuai Shao, Yang Lian, Wei Zheng

It is proven through transmission electron microscope (TEM) analysis that solar sensitizer Cu2SnS3 (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO2 layer to form CTS/TiO2, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO2 and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet–visible (UV–vis) spectroscopy. UV–vis and Photoluminescence (PL) spectra show that the CTS/TiO2 photoanode exhibits wider visible-light absorption as well as lower charge recombination. ZnS quantum dots (QDs) deposited on the CTS/TiO2 photoanode through the in situ successive ion layer adsorption and reaction (SILAR) method as the passivation layer can inhibit the reverse carrier transfer and increase the photocurrent density by building a potential barrier on the CTS/TiO2 photoanode and electrolyte interface. When 2-layer ZnS QDs are deposited, the maximum photocurrent density of the photoelectrochemical (PEC) cell composed of a ZnS/CTS/TiO2 photoanode, a Pt counter electrode, and Na2SO4 solution electrolyte is 8.43 mA/cm2 and the maximum applied bias photon-to-current efficiency (ABPE) is 7.79%. Under 1 sun (AM 1.5, 100 mW/cm2) with 0.6 V bias, its hydrogen yield reached 125.7 μmol·cm–2 after 4 h with the rate of 31.4 μmol·cm–2·h–1 in contrast to the yield of 107.86 μmol·cm–2 with the rate of 21.3 μmol·cm–2·h–1 for the CTS/TiO2 photoanode.

中文翻译:


光阳极/电解质界面修饰在 Cu2SnS3 点敏化太阳能 PEC 电池中实现高效析氢



通过透射电子显微镜 (TEM) 分析证明,通过热注入路线制备的太阳能敏化剂 Cu2SnS3 (CTS) 点是尺寸约为 ∼11 nm 的非球形多面体纳米晶体。CTS 点沉积到多孔 TiO2 层中,形成 CTS/TiO2,这是光阳极中一种有效的 II 型异质结。采用基于密度泛函理论 (DFT) 的平面波超软赝势法研究了 TiO2 和 CTS 的电子能带结构和能带结构,并通过紫外-可见 (UV-vis) 光谱进行了验证。紫外-可见光和光致发光 (PL) 光谱表明,CTS/TiO2 光阳极表现出更宽的可见光吸收和更低的电荷复合。通过原位连续离子层吸附和反应 (SILAR) 方法沉积在 CTS/TiO2 光阳极上的 ZnS 量子点 (QDs) 作为钝化层,可以通过在 CTS/TiO2 光阳极和电解质界面上构建势垒来抑制反向载流子转移并提高光电流密度。当沉积 2 层 ZnS QD 时,由 ZnS/CTS/TiO2 光阳极、Pt 对电极和 Na2SO4 溶液电解质组成的光电化学 (PEC) 电池的最大光电流密度为 8.43 mA/cm2,最大施加的偏置光子电流效率 (ABPE) 为 7.79%。在 1 阳光 (AM 1.5, 100 mW/cm2) 和 0.6 V 偏压下,其氢气产率在 4 小时后达到 125.7 μmol·cm–2,速率为 31.4 μmol·cm–2·h–1,而 CTS/TiO2 光负极的产率为 107.86 μmol·cm–2,速率为 21.3 μmol·cm–2·h–1
更新日期:2024-11-20
down
wechat
bug