Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Deep reconstruction of crystalline–amorphous heterojunction electrocatalysts for efficient and stable water and methanol electrolysis
Nanoscale ( IF 5.8 ) Pub Date : 2024-11-20 , DOI: 10.1039/d4nr02985b Fang Zheng, Mayur A. Gaikwad, Zhenhua Fang, Suyoung Jang, Jin Hyeok Kim
Nanoscale ( IF 5.8 ) Pub Date : 2024-11-20 , DOI: 10.1039/d4nr02985b Fang Zheng, Mayur A. Gaikwad, Zhenhua Fang, Suyoung Jang, Jin Hyeok Kim
During electrocatalytic water splitting, surface reconstruction often occurs to generate truly active species for catalytic reactions, but the stability and mass activity of the catalysts is a huge challenge. A method that combines cation doping with morphology control strategies and constructs an amorphous–crystalline heterostructure is proposed to achieve deep reconstruction of the catalyst during the electrochemical activation process, thereby significantly improving catalytic activity and stability. Amorphous iron borate (FeBO) is deposited on cobalt-doped nickel sulfide (Co-Ni3S2) crystals to form ultrathin nanosheet heterostructures (FeBO/Co-Ni3S2) as bifunctional electrocatalysts for the OER and methanol oxidation reaction (MOR). During the OER process, FeBO/Co-Ni3S2 is deeply reconstructed to form a NiFeOOH/Co-Ni3S2 composite structure with ultrathin nanosheets with abundant amorphous–crystalline interfaces to ensure structural stability. Furthermore, Co-Ni3S2 electrocatalysts were synthesized via nickel foam (NF) self-derivation, which resulted in strong adhesion between the catalyst and substrate and formed a hierarchical structure consisting of interconnected nanosheets with excellent mass transfer and abundant active sites to increase the activity and stability of the electrocatalyst. The dual-electrode electrolyzer requires cell voltages of 1.58 and 1.44 V to achieve water and methanol overall electrolysis at a current density of 10 mA cm−2 and keep working over 100 and 25 h, respectively. This strategy provides a new way to promote reconstruction to construct excellent bifunctional electrocatalysts.
中文翻译:
用于高效稳定水和甲醇电解的结晶-非晶异质结电催化剂的深度重构
在电催化分解水过程中,经常发生表面重构以产生真正具有活性的物质用于催化反应,但催化剂的稳定性和质量活性是一个巨大的挑战。提出了一种将阳离子掺杂与形貌控制策略相结合并构建非晶-结晶异质结构的方法,以实现催化剂在电化学活化过程中的深度重构,从而显著提高催化活性和稳定性。无定形硼酸铁 (FeBO) 沉积在钴掺杂的硫化镍 (Co-Ni3S2) 晶体上,形成超薄纳米片异质结构 (FeBO/Co-Ni3S2),作为 OER 和甲醇氧化反应 (MOR) 的双功能电催化剂。在 OER 过程中,FeBO/Co-Ni3S2 被深度重构,形成 NiFeOOH/Co-Ni3S2 复合结构,具有丰富的非晶-晶界面的超薄纳米片,以确保结构稳定性。此外,通过泡沫镍 (NF) 自衍生合成了 Co-Ni3S2 电催化剂,导致催化剂与衬底之间具有很强的粘附力,并形成了由互连纳米片组成的分层结构,具有优异的质量传递和丰富的活性位点,以提高电催化剂的活性和稳定性。双电极电解槽需要 1.58 V 和 1.44 V 的电池电压,才能在 10 mA cm-2 的电流密度下实现水和甲醇的整体电解,并分别持续工作 100 和 25 小时。 这种策略提供了一种促进重构以构建优良双功能电催化剂的新方法。
更新日期:2024-11-20
中文翻译:
用于高效稳定水和甲醇电解的结晶-非晶异质结电催化剂的深度重构
在电催化分解水过程中,经常发生表面重构以产生真正具有活性的物质用于催化反应,但催化剂的稳定性和质量活性是一个巨大的挑战。提出了一种将阳离子掺杂与形貌控制策略相结合并构建非晶-结晶异质结构的方法,以实现催化剂在电化学活化过程中的深度重构,从而显著提高催化活性和稳定性。无定形硼酸铁 (FeBO) 沉积在钴掺杂的硫化镍 (Co-Ni3S2) 晶体上,形成超薄纳米片异质结构 (FeBO/Co-Ni3S2),作为 OER 和甲醇氧化反应 (MOR) 的双功能电催化剂。在 OER 过程中,FeBO/Co-Ni3S2 被深度重构,形成 NiFeOOH/Co-Ni3S2 复合结构,具有丰富的非晶-晶界面的超薄纳米片,以确保结构稳定性。此外,通过泡沫镍 (NF) 自衍生合成了 Co-Ni3S2 电催化剂,导致催化剂与衬底之间具有很强的粘附力,并形成了由互连纳米片组成的分层结构,具有优异的质量传递和丰富的活性位点,以提高电催化剂的活性和稳定性。双电极电解槽需要 1.58 V 和 1.44 V 的电池电压,才能在 10 mA cm-2 的电流密度下实现水和甲醇的整体电解,并分别持续工作 100 和 25 小时。 这种策略提供了一种促进重构以构建优良双功能电催化剂的新方法。