当前位置:
X-MOL 学术
›
Sens. Actuators B Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Direct synthesis of composite conductive carbon nanofiber aerogels with continuous internal networks for collaborative physiological signal monitoring under complex environments
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.snb.2024.136975 Shouzhi Yan, Shixin Jin, Xinyan He, Jinhao Xu, Hao Feng, Wenyu Xing, Binjie Xin, Dahua Shou
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.snb.2024.136975 Shouzhi Yan, Shixin Jin, Xinyan He, Jinhao Xu, Hao Feng, Wenyu Xing, Binjie Xin, Dahua Shou
The emergence of multifunctional wearable flexible sensors has propelled advancements in healthcare and outdoor sports. However, conventional aerogels used for multifunctional sensing often involve complex fabrication processes, lack durability, and struggle to achieve collaborative sensing in complex scenarios, sometimes even lacking conductivity. This paper presents a novel strategy for synthesizing aerogels with interconnected internal networks directly through electrospinning technology, forming a three-dimensional fluffy structure with interlinked nanofibers. Subsequently, ultra-lightweight, highly elastic, and conductive composite carbon nanofiber aerogels (CCNA) were synthesized through high-temperature calcination and in-situ polymerization, suitable for collaborative physiological signal monitoring in complex situations. By controlling the density and phase separation of the charge jet, the three-dimensional fluffy structure of CCNA can be directly formed without strict reliance on external environmental conditions. The combination of CCNA's three-dimensional fluffiness and hydrophobic-hydrophilic properties enables it to operate within an extremely wide range of relative humidity (10% RH - 95% RH), while its internally continuous fiber network structure ensures stable and reliable electrical signal response even after 5000 compression cycles, with a compression response time of only 55ms. The developed flexible wearable electronic device holds promising prospects in healthcare and intelligent sensing applications.
中文翻译:
具有连续内部网络的复合导电碳纳米纤维气凝胶的直接合成,用于复杂环境下的协同生理信号监测
多功能可穿戴柔性传感器的出现推动了医疗保健和户外运动的进步。然而,用于多功能传感的传统气凝胶往往涉及复杂的制造工艺,缺乏耐用性,难以在复杂场景下实现协同传感,有时甚至缺乏导电性。本文提出了一种直接通过静电纺丝技术合成具有互连内部网络的气凝胶的新策略,形成具有互连纳米纤维的三维蓬松结构。随后,通过高温煅烧和原位聚合合成了超轻、高弹性、导电的复合碳纳米纤维气凝胶 (CCNA),适用于复杂情况下的协同生理信号监测。通过控制电荷射流的密度和相分离,可以直接形成 CCNA 的三维蓬松结构,而无需严格依赖外部环境条件。CCNA 的三维蓬松性和疏水亲水特性的结合使其能够在极宽的相对湿度范围内(10% RH - 95% RH)运行,而其内部连续的光纤网络结构即使在 5000 次压缩循环后也能确保稳定可靠的电信号响应,压缩响应时间仅为 55ms。开发的柔性可穿戴电子设备在医疗保健和智能传感应用中具有广阔的前景。
更新日期:2024-11-20
中文翻译:
具有连续内部网络的复合导电碳纳米纤维气凝胶的直接合成,用于复杂环境下的协同生理信号监测
多功能可穿戴柔性传感器的出现推动了医疗保健和户外运动的进步。然而,用于多功能传感的传统气凝胶往往涉及复杂的制造工艺,缺乏耐用性,难以在复杂场景下实现协同传感,有时甚至缺乏导电性。本文提出了一种直接通过静电纺丝技术合成具有互连内部网络的气凝胶的新策略,形成具有互连纳米纤维的三维蓬松结构。随后,通过高温煅烧和原位聚合合成了超轻、高弹性、导电的复合碳纳米纤维气凝胶 (CCNA),适用于复杂情况下的协同生理信号监测。通过控制电荷射流的密度和相分离,可以直接形成 CCNA 的三维蓬松结构,而无需严格依赖外部环境条件。CCNA 的三维蓬松性和疏水亲水特性的结合使其能够在极宽的相对湿度范围内(10% RH - 95% RH)运行,而其内部连续的光纤网络结构即使在 5000 次压缩循环后也能确保稳定可靠的电信号响应,压缩响应时间仅为 55ms。开发的柔性可穿戴电子设备在医疗保健和智能传感应用中具有广阔的前景。