当前位置:
X-MOL 学术
›
Sens. Actuators B Chem.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Antifouling electrochemical biosensors based on mussel-inspired poly(norepinephrine) and functional peptides for the detection of extracellular signal-regulated kinase 2 in serum
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.snb.2024.136964 Hao Zhou, Xiqin Yang, Mingjun Shi, Xijuan Yu, Xiliang Luo
Sensors and Actuators B: Chemical ( IF 8.0 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.snb.2024.136964 Hao Zhou, Xiqin Yang, Mingjun Shi, Xijuan Yu, Xiliang Luo
The adsorption of nonspecific biomolecules on sensing surfaces presents a challenge for accurate and sensitive detection of targets in complex biological samples, which significantly restricts the practical application of biosensors. It is therefore crucial to develop sensing devices with antifouling capabilities. Herein, a low fouling electrochemical biosensing platform has been developed that leverage two kinds of antifouling materials. One material employed is a specially designed functional peptide, while the other is inspired by the adhesive properties of mussels, known as poly(noradrenaline) (PNE). Compared with polydopamine, the PNE is more effective in reducing the nonspecific adsorption in serum samples. The biosensor, which was developed using PNE and peptide, demonstrated exceptional resistance to fouling and a broad liner detection range of 10.0 pg·mL−1 - 10.0 µg·mL−1 for the detection of the target extracellular signal-regulated kinase 2 (ERK2), allowing for accurate measurements over a broad range of concentrations, with a limit of detection of 3.97 pg·mL−1. The antifouling biosensor was able to detect target ERK2 in serum without pretreatment, and with satisfying accuracy comparable to the ELISA kit. This approach for the construction of low fouling biosensors using peptides and PNE can be easily extended to develop other sensing systems for various targets analysis in human body fluids.
中文翻译:
基于贻贝启发的聚去甲肾上腺素和功能肽的防污电化学生物传感器,用于检测血清中细胞外信号调节激酶 2
非特异性生物分子在传感表面上的吸附对复杂生物样品中靶标的准确和灵敏检测提出了挑战,这极大地限制了生物传感器的实际应用。因此,开发具有防污功能的传感设备至关重要。在此,开发了一种利用两种防污材料的低污染电化学生物传感平台。采用的一种材料是专门设计的功能性肽,而另一种材料的灵感来自贻贝的粘合特性,称为聚去甲肾上腺素 (PNE)。与聚多巴胺相比,PNE 更有效地减少血清样品中的非特异性吸附。使用 PNE 和肽开发的生物传感器表现出卓越的抗污染性和 10.0 pg·mL-1 - 10.0 μg·mL-1 的宽线性检测范围,用于检测目标细胞外信号调节激酶 2 (ERK2),允许在较宽的浓度范围内进行准确测量,检测限为 3.97 pg·mL-1.防污生物传感器无需预处理即可检测血清中的靶标 ERK2,并且具有与 ELISA 试剂盒相当的令人满意的准确性。这种使用肽和 PNE 构建低污染生物传感器的方法可以很容易地扩展到开发其他传感系统,用于人体体液中的各种目标分析。
更新日期:2024-11-20
中文翻译:
基于贻贝启发的聚去甲肾上腺素和功能肽的防污电化学生物传感器,用于检测血清中细胞外信号调节激酶 2
非特异性生物分子在传感表面上的吸附对复杂生物样品中靶标的准确和灵敏检测提出了挑战,这极大地限制了生物传感器的实际应用。因此,开发具有防污功能的传感设备至关重要。在此,开发了一种利用两种防污材料的低污染电化学生物传感平台。采用的一种材料是专门设计的功能性肽,而另一种材料的灵感来自贻贝的粘合特性,称为聚去甲肾上腺素 (PNE)。与聚多巴胺相比,PNE 更有效地减少血清样品中的非特异性吸附。使用 PNE 和肽开发的生物传感器表现出卓越的抗污染性和 10.0 pg·mL-1 - 10.0 μg·mL-1 的宽线性检测范围,用于检测目标细胞外信号调节激酶 2 (ERK2),允许在较宽的浓度范围内进行准确测量,检测限为 3.97 pg·mL-1.防污生物传感器无需预处理即可检测血清中的靶标 ERK2,并且具有与 ELISA 试剂盒相当的令人满意的准确性。这种使用肽和 PNE 构建低污染生物传感器的方法可以很容易地扩展到开发其他传感系统,用于人体体液中的各种目标分析。