当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimized Li+ ion diffusion pathways in unidirectional stacked lithium iron phosphate cathodes: Enhanced electrochemical performance and long-term stability
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157788 Sujeong Kim, Jemin Lee, Hojun Moon, Jaehun Lee, Hyunsub Shin, Jun Sung Lee, Sang Woo Joo, Jeeyoung Yoo, Misook Kang
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157788 Sujeong Kim, Jemin Lee, Hojun Moon, Jaehun Lee, Hyunsub Shin, Jun Sung Lee, Sang Woo Joo, Jeeyoung Yoo, Misook Kang
In this study, we introduce an innovative approach to enhance the electrochemical performance and longevity of lithium iron phosphate (LiFePO4, LFP) cathode materials through a novel saccharide-assisted unidirectional stacking method. The inherent challenges of LFP, such as low lithium-ion diffusion and limited electrical conductivity, are addressed by leveraging saccharides as binders to achieve precise alignment of LFP particles. This method facilitates the formation of unobstructed lithium-ion pathways, significantly enhancing Li+ ion diffusion rates and cycle stability. The unmodified LFP cathode exhibited a lithium-ion diffusion coefficient (DLi+) of 7.79 × 10−12 cm2 s−1, while the S5 (sucrose 5 %) LFP cathode demonstrated a superior diffusion coefficient of 3.5 × 10−10 cm2 s−1. Additionally, the S5-LFP achieved a remarkable discharge capacity of 165.1 mAh g−1 at a 0.1C rate, compared to 147.8 mAh g−1 for the unmodified LFP. The cycle stability was also significantly improved, with the S5-LFP retaining 86.3 % of its capacity after 2,000 cycles at a 5C rate, whereas the unmodified LFP retained only 79.2 % under the same conditions. These improvements are attributed to the optimized particle alignment achieved through saccharide-assisted stacking, which enhances Li+ ion diffusion and overall electrochemical performance. Additionally, the structural integrity and electrochemical stability of the S5-LFP cathodes were thoroughly validated through a comprehensive set of characterization methods and electrochemical tests, highlighting the scalability and cost-effectiveness of this technique for battery manufacturing. This breakthrough in cathode material design offers a promising pathway for the development of high-performance, durable lithium-ion batteries, particularly for applications in electric vehicles and other demanding energy storage systems.
中文翻译:
单向堆叠磷酸铁锂阴极中优化的 Li+ 离子扩散途径:增强的电化学性能和长期稳定性
在这项研究中,我们引入了一种创新方法,通过一种新颖的糖辅助单向堆叠方法来提高磷酸铁锂 (LiFePO4, LFP) 正极材料的电化学性能和寿命。LFP 的固有挑战,例如低锂离子扩散和导电性有限,通过利用糖类作为粘合剂来实现 LFP 颗粒的精确对准,解决了 LFP 的固有挑战。该方法有助于形成畅通无阻的锂离子途径,显著提高 Li+ 离子扩散速率和循环稳定性。未改性的 LFP 阴极的锂离子扩散系数 (DLi+) 为 7.79 × 10-12 cm2 s-1,而 S5(蔗糖 5 %)LFP 阴极表现出 3.5 × 10-10 cm2 s-1 的优异扩散系数。此外,S5-LFP 在 0.1C 倍率下实现了 165.1 mAh g-1 的显着放电容量,而未改性 LFP 的放电容量为 147.8 mAh g-1。循环稳定性也得到了显著提高,S5-LFP 在 5C 速率下循环 2,000 次后仍保留 86.3% 的容量,而未改性的 LFP 在相同条件下仅保留 79.2%。这些改进归因于通过糖类辅助堆叠实现的优化颗粒排列,从而增强了 Li+ 离子扩散和整体电化学性能。 此外,S5-LFP 阴极的结构完整性和电化学稳定性通过一套全面的表征方法和电化学测试进行了全面验证,突出了该技术在电池制造中的可扩展性和成本效益。正极材料设计的这一突破为高性能、耐用的锂离子电池的开发提供了一条前景广阔的途径,特别是对于电动汽车和其他要求苛刻的储能系统的应用。
更新日期:2024-11-20
中文翻译:
单向堆叠磷酸铁锂阴极中优化的 Li+ 离子扩散途径:增强的电化学性能和长期稳定性
在这项研究中,我们引入了一种创新方法,通过一种新颖的糖辅助单向堆叠方法来提高磷酸铁锂 (LiFePO4, LFP) 正极材料的电化学性能和寿命。LFP 的固有挑战,例如低锂离子扩散和导电性有限,通过利用糖类作为粘合剂来实现 LFP 颗粒的精确对准,解决了 LFP 的固有挑战。该方法有助于形成畅通无阻的锂离子途径,显著提高 Li+ 离子扩散速率和循环稳定性。未改性的 LFP 阴极的锂离子扩散系数 (DLi+) 为 7.79 × 10-12 cm2 s-1,而 S5(蔗糖 5 %)LFP 阴极表现出 3.5 × 10-10 cm2 s-1 的优异扩散系数。此外,S5-LFP 在 0.1C 倍率下实现了 165.1 mAh g-1 的显着放电容量,而未改性 LFP 的放电容量为 147.8 mAh g-1。循环稳定性也得到了显著提高,S5-LFP 在 5C 速率下循环 2,000 次后仍保留 86.3% 的容量,而未改性的 LFP 在相同条件下仅保留 79.2%。这些改进归因于通过糖类辅助堆叠实现的优化颗粒排列,从而增强了 Li+ 离子扩散和整体电化学性能。 此外,S5-LFP 阴极的结构完整性和电化学稳定性通过一套全面的表征方法和电化学测试进行了全面验证,突出了该技术在电池制造中的可扩展性和成本效益。正极材料设计的这一突破为高性能、耐用的锂离子电池的开发提供了一条前景广阔的途径,特别是对于电动汽车和其他要求苛刻的储能系统的应用。