当前位置:
X-MOL 学术
›
Chem. Eng. J.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
3D printed lanthanide-doped Ti4O7 reactive membrane for efficient electrochemical disinfection and degradation of antibiotic resistance genes
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157829 Kehao Zhang, Yuran Han, Peiheng Wang, Zhaoshuang Bu, Beibei Wang, Huanhuan Shi, Hailong Wang, Wei Zhang, Shixiang Gao, Qingguo Huang
Chemical Engineering Journal ( IF 13.3 ) Pub Date : 2024-11-19 , DOI: 10.1016/j.cej.2024.157829 Kehao Zhang, Yuran Han, Peiheng Wang, Zhaoshuang Bu, Beibei Wang, Huanhuan Shi, Hailong Wang, Wei Zhang, Shixiang Gao, Qingguo Huang
Simultaneous removal of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is absolutely imperative to prevent the spread of antibiotic resistance in the environment. Herein, suitable dopants of Ti4O7 anode from the lanthanide elements were firstly selected to boost Ti4O7 electrooxidation ability according to density functional theory simulation. 3D printing technology was further adopted to prepare 3D printed lanthanide-doped reactive electrochemical membrane (REM) electrodes, which could efficiently avoid the problem of membrane clogging in the electrochemical filtration operation and increase the hydroxyl radical yield by 56–442 % compared to Ti4O7 REM. We found that complete inactivation (>8.0-log inactivation) of antibiotic resistant Escherichia coli (AR E. coli) was achieved during Nd-Ti4O7 REM (1 wt% Nd) treatment in a single pass at 4 mA cm−2, indicating significant improvement of disinfection efficiency than Ti4O7 REM (3.3-log inactivation) operated in same conditions occurred. Morphology characterization results of treated AR E. coli revealed that cytoplasmic leakage in cell membrane perforation was the main inactivation mechanism. In addition, Nd-Ti4O7 REM also exhibited better electrooxidation efficiency for ARGs removal, thereby eliminating the spread risk of antibiotic resistance. These findings greatly promoted the preparation and application of Ti4O7 REM with highly efficient electrooxidation ability in the treatment of wastewater containing an abundance of antibiotic resistant bacteria.
中文翻译:
3D 打印掺杂镧系元素的 Ti4O7 反应膜,用于高效电化学消毒和降解抗生素耐药基因
同时去除抗生素耐药细菌 (ARB) 和抗生素耐药基因 (ARG) 对于防止抗生素耐药性在环境中传播是绝对必要的。本文根据密度泛函理论模拟,首先从镧系元素中选择合适的 Ti4O7 阳极掺杂剂,以提高 Ti4O7 电氧化能力。进一步采用 3D 打印技术制备 3D 打印的镧系元素掺杂反应电化学膜 (REM) 电极,与 Ti4O7 REM 相比,可以有效避免电化学过滤操作中的膜堵塞问题,并将羟基自由基产率提高 56-442%。我们发现,在 4 mA cm-2 下,在 Nd-Ti4O7 REM (1 wt% Nd) 处理期间,抗生素耐药性大肠杆菌 (AR E. coli) 的完全灭活 (>8.0-log 灭活) 在相同条件下单次通过,表明消毒效率比 Ti4O7 REM (3.3-log 灭活) 显着提高。处理后的 AR 大肠杆菌的形态学表征结果显示,细胞膜穿孔中的细胞质渗漏是主要的失活机制。此外,Nd-Ti4O7 REM 还表现出更好的电氧化去除 ARGs 的效率,从而消除了抗生素耐药性的传播风险。这些发现极大地促进了具有高效电氧化能力的 Ti4O7 REM 的制备和应用,用于处理含有大量抗生素耐药菌的废水。
更新日期:2024-11-20
中文翻译:
3D 打印掺杂镧系元素的 Ti4O7 反应膜,用于高效电化学消毒和降解抗生素耐药基因
同时去除抗生素耐药细菌 (ARB) 和抗生素耐药基因 (ARG) 对于防止抗生素耐药性在环境中传播是绝对必要的。本文根据密度泛函理论模拟,首先从镧系元素中选择合适的 Ti4O7 阳极掺杂剂,以提高 Ti4O7 电氧化能力。进一步采用 3D 打印技术制备 3D 打印的镧系元素掺杂反应电化学膜 (REM) 电极,与 Ti4O7 REM 相比,可以有效避免电化学过滤操作中的膜堵塞问题,并将羟基自由基产率提高 56-442%。我们发现,在 4 mA cm-2 下,在 Nd-Ti4O7 REM (1 wt% Nd) 处理期间,抗生素耐药性大肠杆菌 (AR E. coli) 的完全灭活 (>8.0-log 灭活) 在相同条件下单次通过,表明消毒效率比 Ti4O7 REM (3.3-log 灭活) 显着提高。处理后的 AR 大肠杆菌的形态学表征结果显示,细胞膜穿孔中的细胞质渗漏是主要的失活机制。此外,Nd-Ti4O7 REM 还表现出更好的电氧化去除 ARGs 的效率,从而消除了抗生素耐药性的传播风险。这些发现极大地促进了具有高效电氧化能力的 Ti4O7 REM 的制备和应用,用于处理含有大量抗生素耐药菌的废水。