当前位置:
X-MOL 学术
›
J. Hazard. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A core-shell structured crystalline@amorphous MnO2 with enhanced plasma catalytic degradation performance for Volatile Organic Sulfur Compounds and degradation mechanism exploration
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.jhazmat.2024.136597 Wenji Feng, Chong Wang, Mengyu Liu, Haiqiang Wang, Zhongbiao Wu
Journal of Hazardous Materials ( IF 12.2 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.jhazmat.2024.136597 Wenji Feng, Chong Wang, Mengyu Liu, Haiqiang Wang, Zhongbiao Wu
A crystalline@amorphous MnO2 (HT@RT) plasma catalyst was successfully constructed in this study to address the problem of odor pollution, especially from volatile organic sulfur compounds (VOSCs) with low olfactory thresholds. Complete conversion of dimethyl sulfide (DMS) at 140 J/L was achieved, and the ozone concentration in the exhaust gas was maintained below 5 ppm. Deeper mineralization of DMS was achieved in the HT@RT sample than in the individual HT and RT samples. A comprehensive analysis of multiple characterization techniques revealed that the HT@RT sample exhibited excellent DMS adsorption capacity, appropriate electric field responsiveness, high oxygen vacancy content, and abundant reactive oxygen species, which play key roles in the degradation of DMS. In addition, the DMS degradation process was investigated using in situ plasma diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Combined with the results of gas chromatography-mass spectrometry, degradation pathways for DMS were proposed. The HT@RT sample combined the advantages of both amorphous and crystalline materials, significantly enhancing the activity and stability of the catalyst. Therefore, the crystalline@amorphous structured catalysts constructed in this study not only offer new insights for improving the performance of plasma catalysis but also provide an effective solution for eliminating odorous gases.
中文翻译:
一种核壳结构crystalline@amorphous MnO2 对挥发性有机硫化合物具有增强的等离子体催化降解性能及降解机理探索
本研究成功构建了 crystalline@amorphous MnO2 (HT@RT) 等离子体催化剂,以解决气味污染问题,尤其是来自嗅觉阈值较低的挥发性有机硫化合物 (VOSC) 的气味污染问题。实现了 140J/L 的二甲基硫醚 (DMS) 的完全转化,废气中的臭氧浓度保持在 5 ppm 以下。HT@RT样品中 DMS 的矿化程度比单个 HT 和 RT 样品更深。对多种表征技术的综合分析表明,HT@RT样品表现出优异的 DMS 吸附能力、适当的电场响应性、高氧空位含量和丰富的活性氧,这些在 DMS 的降解中起关键作用。此外,使用原位等离子体漫反射红外傅里叶变换 (DRIFT) 光谱研究了 DMS 降解过程。结合气相色谱-质谱分析的结果,提出了 DMS 的降解途径。HT@RT样品结合了非晶和结晶材料的优点,显著提高了催化剂的活性和稳定性。因此,本研究构建的crystalline@amorphous结构催化剂不仅为提高等离子体催化性能提供了新的见解,而且为消除恶臭气体提供了有效的解决方案。
更新日期:2024-11-20
中文翻译:
一种核壳结构crystalline@amorphous MnO2 对挥发性有机硫化合物具有增强的等离子体催化降解性能及降解机理探索
本研究成功构建了 crystalline@amorphous MnO2 (HT@RT) 等离子体催化剂,以解决气味污染问题,尤其是来自嗅觉阈值较低的挥发性有机硫化合物 (VOSC) 的气味污染问题。实现了 140J/L 的二甲基硫醚 (DMS) 的完全转化,废气中的臭氧浓度保持在 5 ppm 以下。HT@RT样品中 DMS 的矿化程度比单个 HT 和 RT 样品更深。对多种表征技术的综合分析表明,HT@RT样品表现出优异的 DMS 吸附能力、适当的电场响应性、高氧空位含量和丰富的活性氧,这些在 DMS 的降解中起关键作用。此外,使用原位等离子体漫反射红外傅里叶变换 (DRIFT) 光谱研究了 DMS 降解过程。结合气相色谱-质谱分析的结果,提出了 DMS 的降解途径。HT@RT样品结合了非晶和结晶材料的优点,显著提高了催化剂的活性和稳定性。因此,本研究构建的crystalline@amorphous结构催化剂不仅为提高等离子体催化性能提供了新的见解,而且为消除恶臭气体提供了有效的解决方案。