当前位置:
X-MOL 学术
›
Inorg. Chem. Front.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Tailoring electronic structure to enhance the ammonium-ion storage properties of VO2 by molybdenum doping toward highly efficient aqueous ammonium-ion batteries
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-19 , DOI: 10.1039/d4qi01910e Yifu Zhang, Zhenhua Zhou, Xianfang Tan, Yanyan Liu, Fangfang Zhang, Changgong Meng, Xiaoming Zhu
Inorganic Chemistry Frontiers ( IF 6.1 ) Pub Date : 2024-11-19 , DOI: 10.1039/d4qi01910e Yifu Zhang, Zhenhua Zhou, Xianfang Tan, Yanyan Liu, Fangfang Zhang, Changgong Meng, Xiaoming Zhu
Recently, research on ammonium-ion storage has gained widespread interest, and it is still a major problem and a popular research area to produce high-performance electrode materials for aqueous ammonium ion batteries (AAIBs). Herein, the electronic structure of tunnel-like vanadium dioxide (VO2) is tailored by molybdenum doping (denoted as VO2-Mo) to enhance ammonium-ion storage properties toward highly efficient AAIBs. VO2-Mo with a unique nanobelt structure is designed and synthesized by adjusting the content of Mo via a facile hydrothermal method. Density functional theory (DFT) simulations and experimental data both demonstrate that molybdenum atoms in the VO2 structure can improve mass transfer, speed up ion transport, and accelerate kinetics, showing boosted NH4+-storage properties. With 2% Mo doping, at 0.1 A g−1, VO2-Mo exhibits a specific discharge capacity of around 370 mA h g−1, surpassing VO2 (232 mA h g−1) and the vanadium oxide-based materials that have been reported for NH4+-storage. After approximately 6000 successive charging and discharging cycles at 2 A g−1, it essentially maintains the specific capacity of 140 mA h g−1. Using VO2-Mo, polyaniline (PANI) and 1 M (NH4)2SO4 as the anode, cathode, and electrolyte, respectively, a VO2-Mo//PANI full battery was further built, and at 0.2 A g−1, it reached a specific discharge capacity of up to 232 mA h g−1, surpassing the performances of the most state-of-the-art AAIBs. At 89 W kg−1, the VO2-Mo//PANI battery can achieve an energy density (E) up to 133 W h kg−1. This study provides new ideas for tailoring electrode materials with enhanced NH4+-storage for AAIBs.
中文翻译:
通过钼掺杂高效水系铵离子电池来定制电子结构以增强 VO2 的铵离子存储性能
近年来,铵离子储存的研究引起了广泛关注,生产用于水系铵离子电池 (AAIB) 的高性能电极材料仍然是一个主要问题和一个热门的研究领域。在此,隧道状二氧化钒 (VO2) 的电子结构是通过钼掺杂(表示为 VO2-Mo)定制的,以增强铵离子存储性能,以实现高效的 AAIBs。VO2-Mo 具有独特的纳米带结构,是通过简单的水热法调节 Mo 的含量来设计和合成的。密度泛函理论 (DFT) 模拟和实验数据都表明,VO2 结构中的钼原子可以改善传质、加速离子传输并加速动力学,显示出增强的 NH4+ 存储特性。在 2% Mo 掺杂下,在 0.1 A g-1 下,VO2-Mo 的比放电容量约为 370 mA h g-1,超过了 VO2 (232 mA h g-1) 和已报道的用于 NH4+ 存储的氧化钒基材料。在 2 A g-1 下连续充电和放电循环大约 6000 次后,它基本上保持了 140 mA h g-1 的比容量。 使用 VO2-Mo、聚苯胺 (PANI) 和 1 M (NH4)2SO4 分别作为阳极、阴极和电解质,进一步构建了 VO2-Mo//PANI 满电池,在 0.2 A g-1 时,它达到了高达 232 mA h g-1 的比放电容量,超过了最先进的 AAIB 的性能。在 89 W kg-1 时,VO2-Mo//PANI 电池可以达到高达 133 W h kg-1 的能量密度 (E)。本研究为为 AAIBs 定制具有增强 NH4+ 存储的电极材料提供了新思路。
更新日期:2024-11-19
中文翻译:
通过钼掺杂高效水系铵离子电池来定制电子结构以增强 VO2 的铵离子存储性能
近年来,铵离子储存的研究引起了广泛关注,生产用于水系铵离子电池 (AAIB) 的高性能电极材料仍然是一个主要问题和一个热门的研究领域。在此,隧道状二氧化钒 (VO2) 的电子结构是通过钼掺杂(表示为 VO2-Mo)定制的,以增强铵离子存储性能,以实现高效的 AAIBs。VO2-Mo 具有独特的纳米带结构,是通过简单的水热法调节 Mo 的含量来设计和合成的。密度泛函理论 (DFT) 模拟和实验数据都表明,VO2 结构中的钼原子可以改善传质、加速离子传输并加速动力学,显示出增强的 NH4+ 存储特性。在 2% Mo 掺杂下,在 0.1 A g-1 下,VO2-Mo 的比放电容量约为 370 mA h g-1,超过了 VO2 (232 mA h g-1) 和已报道的用于 NH4+ 存储的氧化钒基材料。在 2 A g-1 下连续充电和放电循环大约 6000 次后,它基本上保持了 140 mA h g-1 的比容量。 使用 VO2-Mo、聚苯胺 (PANI) 和 1 M (NH4)2SO4 分别作为阳极、阴极和电解质,进一步构建了 VO2-Mo//PANI 满电池,在 0.2 A g-1 时,它达到了高达 232 mA h g-1 的比放电容量,超过了最先进的 AAIB 的性能。在 89 W kg-1 时,VO2-Mo//PANI 电池可以达到高达 133 W h kg-1 的能量密度 (E)。本研究为为 AAIBs 定制具有增强 NH4+ 存储的电极材料提供了新思路。