当前位置:
X-MOL 学术
›
Finance Research Letters
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The relationship between ESG ratings and digital technological innovation in manufacturing: Insights via dual machine learning models
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-10-26 , DOI: 10.1016/j.frl.2024.106362 Bai Yang, Jingfeng Huang, Yinzhong Chen
Finance Research Letters ( IF 7.4 ) Pub Date : 2024-10-26 , DOI: 10.1016/j.frl.2024.106362 Bai Yang, Jingfeng Huang, Yinzhong Chen
In the era of the current scientific and technological revolution and industrial transformation, digital technology innovation serves as a critical driver for the high-quality development of manufacturing enterprises. The dual attributes of ESG (Environmental, Social, and Governance) ratings, encompassing "internal governance" and "external support," play a pivotal role in propelling digital technology innovation within these enterprises. This study utilizes a dual machine learning approach to empirically investigate the influence of ESG ratings on the digital technology innovation of manufacturing enterprises and explores the underlying mechanisms. Findings indicate that ESG ratings significantly boost digital technology innovation by alleviating financial market constraints, enhancing customer stability in the product market, elevating human resource levels, and increasing innovation awareness and efficiency. These improvements occur through the mechanisms of "external support" and "internal governance." Moreover, the study reveals that ESG ratings substantially enhance digital technology innovation in state-owned and high-tech manufacturing enterprises, in contrast to their limited impact on non-state-owned and non-high-tech counterparts. Conclusively, the paper proposes policy recommendations focused on heightening enterprise and societal awareness of ESG importance, intensifying supervision and enforcement, and refining the ESG rating system.
中文翻译:
ESG 评级与制造业数字技术创新之间的关系:通过双机器学习模型获得洞察
在当前科技革命和产业变革的时代,数字技术创新是制造企业高质量发展的关键驱动力。ESG(环境、社会和治理)评级的双重属性,包括“内部治理”和“外部支持”,在推动这些企业内部的数字技术创新方面发挥着关键作用。本研究利用双机器学习方法实证考察了 ESG 评级对制造企业数字技术创新的影响,并探讨了其潜在机制。研究结果表明,ESG 评级通过缓解金融市场限制、增强产品市场的客户稳定性、提升人力资源水平以及提高创新意识和效率,显著促进了数字技术创新。这些改进是通过 “外部支持” 和 “内部治理” 机制实现的。此外,研究还显示,ESG 评级显著促进了国有和高科技制造企业的数字技术创新,而对非国有和非高科技企业的影响有限。总之,本文提出了政策建议,重点是提高企业和社会对 ESG 重要性的认识,加强监督和执法,以及完善 ESG 评级系统。
更新日期:2024-10-26
中文翻译:
ESG 评级与制造业数字技术创新之间的关系:通过双机器学习模型获得洞察
在当前科技革命和产业变革的时代,数字技术创新是制造企业高质量发展的关键驱动力。ESG(环境、社会和治理)评级的双重属性,包括“内部治理”和“外部支持”,在推动这些企业内部的数字技术创新方面发挥着关键作用。本研究利用双机器学习方法实证考察了 ESG 评级对制造企业数字技术创新的影响,并探讨了其潜在机制。研究结果表明,ESG 评级通过缓解金融市场限制、增强产品市场的客户稳定性、提升人力资源水平以及提高创新意识和效率,显著促进了数字技术创新。这些改进是通过 “外部支持” 和 “内部治理” 机制实现的。此外,研究还显示,ESG 评级显著促进了国有和高科技制造企业的数字技术创新,而对非国有和非高科技企业的影响有限。总之,本文提出了政策建议,重点是提高企业和社会对 ESG 重要性的认识,加强监督和执法,以及完善 ESG 评级系统。