当前位置:
X-MOL 学术
›
Comput. Struct.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Offline iteration-based real-time hybrid simulation for high-fidelity fluid-structure dynamic interaction in structures subjected to seismic excitation
Computers & Structures ( IF 4.4 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.compstruc.2024.107579 Yuchen Hu, Yafei Zhang, Zihao Zhou, Ning Li, Dan Zhang
Computers & Structures ( IF 4.4 ) Pub Date : 2024-11-04 , DOI: 10.1016/j.compstruc.2024.107579 Yuchen Hu, Yafei Zhang, Zihao Zhou, Ning Li, Dan Zhang
This study introduces an offline iteration-based real-time hybrid simulation (OI-RTHS) method, a novel approach for simulating fluid–structure dynamic interaction (FSDI) under seismic excitation. With this method, hydrodynamic forces are treated as a physical substructure, while numerical computation and servo loading are performed independently throughout the entire duration of the seismic event. By iteratively correcting the input command signals and obtaining the output response signals during each iteration process, they can eventually achieve balanced coordination at the boundaries. This characteristic introduces real hydrodynamic data to address the limitations of purely numerical theoretical analysis, ensuring high fidelity. Additionally, it reduces the need for real-time communication between numerical computation and servo loading, thereby reducing hardware and software requirements. In this study, experimental verification of the proposed method is conducted, and the results illustrate that the method can address the convergence issue of dynamic response for FSDI of structures in the water after a finite number of iterations. Moreover, regarding the hydrodynamic force as a physical substructure helps prevent errors arising from repeated loading processes, enabling the benefits of the OI-RTHS method. This study offers potential insights for the research on the FSDI of structures, also other environmental loadings.
中文翻译:
基于离线迭代的实时混合仿真,用于地震激励结构中的高保真流固动态相互作用
本研究介绍了一种基于离线迭代的实时混合仿真 (OI-RTHS) 方法,这是一种在地震激励下模拟流固耦合 (FSDI) 的新方法。使用这种方法,流体动力被视为物理子结构,而数值计算和伺服载荷在地震事件的整个持续时间内独立执行。通过迭代校正输入命令信号并在每次迭代过程中获得输出响应信号,它们最终可以在边界处实现平衡协调。这一特性引入了真实的流体动力学数据,以解决纯数值理论分析的局限性,确保高保真度。此外,它还减少了数值计算和伺服负载之间实时通信的需求,从而降低了硬件和软件要求。本文对所提方法进行了实验验证,结果表明,该方法在有限次迭代后可以解决水中结构FSDI动态响应的收敛问题。此外,将流体动力视为物理子结构有助于防止重复加载过程引起的误差,从而实现 OI-RTHS 方法的优势。本研究为结构的 FSDI 以及其他环境载荷的研究提供了潜在的见解。
更新日期:2024-11-04
中文翻译:
基于离线迭代的实时混合仿真,用于地震激励结构中的高保真流固动态相互作用
本研究介绍了一种基于离线迭代的实时混合仿真 (OI-RTHS) 方法,这是一种在地震激励下模拟流固耦合 (FSDI) 的新方法。使用这种方法,流体动力被视为物理子结构,而数值计算和伺服载荷在地震事件的整个持续时间内独立执行。通过迭代校正输入命令信号并在每次迭代过程中获得输出响应信号,它们最终可以在边界处实现平衡协调。这一特性引入了真实的流体动力学数据,以解决纯数值理论分析的局限性,确保高保真度。此外,它还减少了数值计算和伺服负载之间实时通信的需求,从而降低了硬件和软件要求。本文对所提方法进行了实验验证,结果表明,该方法在有限次迭代后可以解决水中结构FSDI动态响应的收敛问题。此外,将流体动力视为物理子结构有助于防止重复加载过程引起的误差,从而实现 OI-RTHS 方法的优势。本研究为结构的 FSDI 以及其他环境载荷的研究提供了潜在的见解。