当前位置: X-MOL 学术Comput. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Discovering data spaces: A classification of design options
Computers in Industry ( IF 8.2 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.compind.2024.104212
Anna Gieß, Thorsten Schoormann, Frederik Möller, Inan Gür

Technical coordination between organizations and security concerns are among the major barriers to data sharing. Data spaces are an emerging digital infrastructure that helps address these challenges by sovereignly sharing data across institutional boundaries. The data space concept is at the core of many high-profile research initiatives in the European Union and receives great adoption in practice. Despite the great interest, there is, however, a demand for more conceptual clarity and approaches to describe and design them purposefully. We propose a taxonomy of data space design options grounded in a literature review, an analysis of real-world objects, and over nine hours of expert interviews with data space initiatives. The taxonomy advances our understanding of data space designs and gives a framework to practice making informed design decisions. Our work provides a comprehensive solution space for data space designers to (a) (re-)design data spaces more efficiently and (b) acquire a ‘big picture’ of what needs to be considered.

中文翻译:


发现数据空间:设计选项的分类



组织之间的技术协调和安全问题是数据共享的主要障碍之一。数据空间是一种新兴的数字基础设施,通过跨机构边界主权共享数据来帮助应对这些挑战。数据空间概念是欧盟许多备受瞩目的研究计划的核心,并在实践中得到广泛采用。尽管人们非常感兴趣,但需要更清晰的概念和有目的地描述和设计它们的方法。我们提出了一个数据空间设计选项的分类法,该分类法基于文献综述、对现实世界对象的分析以及对数据空间计划的超过 9 小时的专家访谈。该分类法促进了我们对数据空间设计的理解,并为练习做出明智的设计决策提供了一个框架。我们的工作为数据空间设计人员提供了一个全面的解决方案空间,以 (a) 更有效地(重新)设计数据空间,以及 (b) 获得需要考虑的“大局”。
更新日期:2024-11-15
down
wechat
bug