当前位置:
X-MOL 学术
›
Agric. Water Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Influences of residual stomatal conductance on the intrinsic water use efficiency of two C3 and two C4 species
Agricultural Water Management ( IF 5.9 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.agwat.2024.109136 Zi Piao Ye, Jian Qiang He, Ting An, Shi Hua Duan, Hua Jing Kang, Fu Biao Wang
Agricultural Water Management ( IF 5.9 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.agwat.2024.109136 Zi Piao Ye, Jian Qiang He, Ting An, Shi Hua Duan, Hua Jing Kang, Fu Biao Wang
Intrinsic water use efficiency (WUE i ) is a critical parameter that encapsulates the equilibrium between carbon assimilation and the concomitant water expenditure. Enhancing the WUE i of crops is not only instrumental in bolstering their resilience to drought but also enables higher carbon fixation efficiency under conditions of scarce water resources. Improving the WUE i of crop varieties has become a major goal because water has become a critical limiting factor in crop productivity within the context of global change. The WUE i , traditionally calculated by W U E i = ( C a − C i ) / 1.6 (C a , atmospheric CO2 concentration; C i , intercellular CO2 concentration), may vary from that derived from W U E i = A / g sw (A , net photosynthetic rate; g sw , stomatal conductance to water vapor). In the study, the LI-6400 portable photosynthesis system was used for monitoring the leaf gas exchange of two C3 (soybean and wheat) and two C4 (maize and grain amaranth) species under changing irradiance (I ) and CO2 concentration conditions. One paired-sample t test was used to compare the significant differences between WUE i values calculated by different equations and the observed values. The results showed that W U E i = ( C a − C i ) / 1.6 significantly overestimated the calculated WUE i values than their corresponding observations by at least 17.78 %, 23.20 %, 9.07 %, and 14.26 % in light-response of WUE i (WUE i –I ) and by at least 23.28 %, 22.02 %, 13.44 %, and 12.59 % in CO2 -response of WUE i (WUE i –C i ) curves for soybean, wheat, maize, and grain amaranth, respectively. However, the relationship between net photosynthetic rate (A ) and stomatal conductance to CO2 (g sc ) can be improved by incorporating an empirical slope (g 1 ) and residual stomatal conductance (g 0 ), which can be characterized asA = ( g sc – g 0 ) ( C a – C i ) / g 1 . Consequently, WUE i can be calculated by W U E i = 1 1.6 g 1 ( 1 − 1.6 g 0 g sw ) ( C a − C i ) . It is highlighted that this modified equation can not only more accurately characterize the WUE i in responses to varying I and CO2 concentration conditions but also yields a remarkably high coefficient of determination (R 2 > 0.989) for the four species. These findings will provide plant physiologists and agronomists with a precise calculation tool to better understand and optimize crop water use efficiency in the face of environmental challenges.
中文翻译:
残余气孔导度对 2 种 C3 和 2 种 C4 物种内禀水分利用效率的影响
固有水分利用效率 (WUEi) 是一个关键参数,它封装了碳同化和随之而来的水支出之间的平衡。提高作物的 WUEi 不仅有助于增强其抗旱能力,而且在水资源稀缺的情况下可以提高固碳效率。提高作物品种的 WUEi 已成为一个主要目标,因为在全球变化的背景下,水已成为作物生产力的关键限制因素。WUEi,传统上由 WUEi=(Ca−Ci)/1.6(Ca,大气 CO2 浓度;Ci,细胞间 CO2 浓度),可能与 WUEi=A/gsw(A,净光合速率;gsw,气孔对水蒸气的导度)得出的浓度不同。在该研究中,LI-6400 便携式光合作用系统用于监测两种 C3 (大豆和小麦) 和两种 C4 (玉米和谷物苋菜) 物种在辐照度 (I) 和 CO2 浓度变化条件下的叶片气体交换。采用 1 对样本 t 检验比较不同方程计算的 WUEi 值与实测值之间的显著差异。结果表明,WUEi=(Ca−Ci)/1.6 显著高估了计算的 WUEi 值,比其相应的观测值高估了至少 17.78 %、23.20 %、9.07 % 和 14.26 %,大豆、小麦、玉米和谷物苋菜的 WUEi (WUEi-Ci) 的 CO2 响应曲线分别高估了至少 23.28 %、22.02 %、13.44 % 和 12.59 %。然而,净光合速率 (A) 和气孔导度对 CO2 (gsc) 之间的关系可以通过结合经验斜率 (g1) 和残余气孔导度 (g0) 来改善,其特征可以是 A=(gsc–g0)(Ca–Ci)/g1。 因此,WUEi 可以通过 WUEi=11.6g1(1-1.6g0gsw)(Ca-Ci) 计算。结果表明,这个修改后的方程不仅可以更准确地表征响应不同 I 和 CO2 浓度条件的 WUEi,而且可以产生非常高的四种物质的决定系数 (R2 > 0.989)。这些发现将为植物生理学家和农学家提供精确的计算工具,以更好地了解和优化作物在面对环境挑战时的水分利用效率。
更新日期:2024-11-20
中文翻译:
残余气孔导度对 2 种 C3 和 2 种 C4 物种内禀水分利用效率的影响
固有水分利用效率 (WUEi) 是一个关键参数,它封装了碳同化和随之而来的水支出之间的平衡。提高作物的 WUEi 不仅有助于增强其抗旱能力,而且在水资源稀缺的情况下可以提高固碳效率。提高作物品种的 WUEi 已成为一个主要目标,因为在全球变化的背景下,水已成为作物生产力的关键限制因素。WUEi,传统上由 WUEi=(Ca−Ci)/1.6(Ca,大气 CO2 浓度;Ci,细胞间 CO2 浓度),可能与 WUEi=A/gsw(A,净光合速率;gsw,气孔对水蒸气的导度)得出的浓度不同。在该研究中,LI-6400 便携式光合作用系统用于监测两种 C3 (大豆和小麦) 和两种 C4 (玉米和谷物苋菜) 物种在辐照度 (I) 和 CO2 浓度变化条件下的叶片气体交换。采用 1 对样本 t 检验比较不同方程计算的 WUEi 值与实测值之间的显著差异。结果表明,WUEi=(Ca−Ci)/1.6 显著高估了计算的 WUEi 值,比其相应的观测值高估了至少 17.78 %、23.20 %、9.07 % 和 14.26 %,大豆、小麦、玉米和谷物苋菜的 WUEi (WUEi-Ci) 的 CO2 响应曲线分别高估了至少 23.28 %、22.02 %、13.44 % 和 12.59 %。然而,净光合速率 (A) 和气孔导度对 CO2 (gsc) 之间的关系可以通过结合经验斜率 (g1) 和残余气孔导度 (g0) 来改善,其特征可以是 A=(gsc–g0)(Ca–Ci)/g1。 因此,WUEi 可以通过 WUEi=11.6g1(1-1.6g0gsw)(Ca-Ci) 计算。结果表明,这个修改后的方程不仅可以更准确地表征响应不同 I 和 CO2 浓度条件的 WUEi,而且可以产生非常高的四种物质的决定系数 (R2 > 0.989)。这些发现将为植物生理学家和农学家提供精确的计算工具,以更好地了解和优化作物在面对环境挑战时的水分利用效率。