当前位置:
X-MOL 学术
›
Agric. Water Manag.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A distributed simulation-optimization framework for many-objective water resources allocation in canal-well combined irrigation district under diverse supply and demand scenarios
Agricultural Water Management ( IF 5.9 ) Pub Date : 2024-10-25 , DOI: 10.1016/j.agwat.2024.109109 Qianzuo Zhao, Yanan Jiang, Qianyu Wang, Fenfang Xu
Agricultural Water Management ( IF 5.9 ) Pub Date : 2024-10-25 , DOI: 10.1016/j.agwat.2024.109109 Qianzuo Zhao, Yanan Jiang, Qianyu Wang, Fenfang Xu
To address the issues of both water resources allocation and sustainable management in agriculture areas with rising food demand, a simulation-optimization framework based on Flopy and Pymoo was proposed and developed for canal-well combined irrigation districts. The proposed framework first solved the many-objective water resources allocation problem which integrates groundwater simulation, crop production, and farmer income modules to quantitatively reveal the various trade-offs and synergies by using NSGA-III algorithm. The Entropy-TOPSIS method was then applied to recommend proper water allocation schemes. The proposed framework was further tested in Baojixia irrigation district considering various water supply and crop demand scenarios based on Copula-based uncertainty analysis. The Key findings are as follows: (1) the proposed framework could effectively optimize conjunctive water resources allocation problems of both surface water and groundwater; (2) low supply combined with high demand (p=0.17) is more likely to occur than high supply with high demand (p=0.02); (3) increased crop demand and restricted surface water negatively impact both water productivity and groundwater sustainability; and (4) the cumulative groundwater drawdown of recommend schemes is 36.9 % and 6.5 % higher under low to medium supply scenarios, while water productivity of recommend schemes decreases 28.2 % and 9.7 % with high and medium demand. This framework could provide useful insights for sustainable agricultural water management in canal-well combined irrigation district with various uncertainties in supply and demand scenarios.
中文翻译:
不同供需情景下渠井合灌区多目标水资源配置的分布式仿真优化框架
为了解决粮食需求不断增长的农业地区的水资源分配和可持续管理问题,提出了一种基于 Flopy 和 Pymoo 的模拟优化框架,用于运河-井联合灌溉区。所提出的框架首先解决了多目标水资源分配问题,该问题集成了地下水模拟、作物生产和农民收入模块,以使用 NSGA-III 算法定量揭示各种权衡和协同作用。然后应用 Entropy-TOPSIS 方法推荐适当的水分配方案。基于基于 Copula 的不确定性分析,考虑了各种供水和作物需求情景,在宝鸡峡灌区进一步测试了所提出的框架。主要发现如下:(1)所提框架可以有效优化地表水和地下水的结合水资源配置问题;(2) 低供应结合高需求 (p=0.17) 比高供应高需求 (p=0.02) 更容易发生;(3) 作物需求增加和地表水限制对水生产力和地下水可持续性产生负面影响;(4) 在中低供应情况下,推荐方案的累计地下水消耗量分别高出 36.9% 和 6.5%,而在高需求和中等需求情况下,推荐方案的产水率分别下降了 28.2% 和 9.7%。该框架可为沟井合灌区的可持续农业用水管理提供有用的见解,同时在供需情景中具有各种不确定性。
更新日期:2024-10-25
中文翻译:
不同供需情景下渠井合灌区多目标水资源配置的分布式仿真优化框架
为了解决粮食需求不断增长的农业地区的水资源分配和可持续管理问题,提出了一种基于 Flopy 和 Pymoo 的模拟优化框架,用于运河-井联合灌溉区。所提出的框架首先解决了多目标水资源分配问题,该问题集成了地下水模拟、作物生产和农民收入模块,以使用 NSGA-III 算法定量揭示各种权衡和协同作用。然后应用 Entropy-TOPSIS 方法推荐适当的水分配方案。基于基于 Copula 的不确定性分析,考虑了各种供水和作物需求情景,在宝鸡峡灌区进一步测试了所提出的框架。主要发现如下:(1)所提框架可以有效优化地表水和地下水的结合水资源配置问题;(2) 低供应结合高需求 (p=0.17) 比高供应高需求 (p=0.02) 更容易发生;(3) 作物需求增加和地表水限制对水生产力和地下水可持续性产生负面影响;(4) 在中低供应情况下,推荐方案的累计地下水消耗量分别高出 36.9% 和 6.5%,而在高需求和中等需求情况下,推荐方案的产水率分别下降了 28.2% 和 9.7%。该框架可为沟井合灌区的可持续农业用水管理提供有用的见解,同时在供需情景中具有各种不确定性。