当前位置: X-MOL 学术Comput. Math. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Deep mixed residual method for solving PDE-constrained optimization problems
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-11-15 , DOI: 10.1016/j.camwa.2024.11.009
Jinjun Yong, Xianbing Luo, Shuyu Sun, Changlun Ye

The deep mixed residual method (DeepMRM) is a technique to solve partial differential equation. In this paper, it is applied to tackle PDE-constrained optimization problems (PDE-COPs). For a PDE-COP, we transform it into an optimality system, and then employ mixed residual method (MRM) on this system. By implementing the DeepMRM with three different network structures (fully connected neural network, residual network, and attention fully connected neural network), we successfully solve PDE-COPs including elliptic, semi-linear elliptic, and Navier-Stokes (NS) equation constrained optimization problems. Compared with the exact or high-fidelity solutions, the DeepMRM provides an effective approach for solving PDE-COPs using the three different network structures.

中文翻译:


用于求解偏微分方程约束优化问题的深度混合残差方法



深度混合残差法 (DeepMRM) 是一种求解偏微分方程的技术。在本文中,它被应用于解决 PDE 约束优化问题 (PDE-COPs)。对于 PDE-COP,我们将其转换为最优系统,然后在该系统上采用混合残差法 (MRM)。通过实施具有三种不同网络结构(全连接神经网络、残差网络和注意力全连接神经网络)的 DeepMRM,我们成功解决了 PDE-COP,包括椭圆、半线性椭圆和 Navier-Stokes (NS) 方程约束优化问题。与精确或高保真解决方案相比,DeepMRM 为使用三种不同的网络结构求解 PDE-COP 提供了一种有效的方法。
更新日期:2024-11-15
down
wechat
bug