当前位置:
X-MOL 学术
›
J. Am. Chem. Soc.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Ligand-Directed Valence Band Engineering in Pb2+ Hybrid Crystals: Achieving Dispersive Bands and Shallow Valence Band Maximum
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-11-19 , DOI: 10.1021/jacs.4c12804 Daiki Umeyama, Soshi Iimura
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2024-11-19 , DOI: 10.1021/jacs.4c12804 Daiki Umeyama, Soshi Iimura
While crystalline hybrid solids hold great potential as novel semiconductors, most semiconductive hybrids utilize transition metal ions, which inherently limit carrier mobility due to the small band dispersion derived from the d orbitals. The filled s orbitals of post-transition metal ions offer the potential to design dispersed valence bands, but a method to translate the local structure design of these metal ions to valence band engineering is still in development. This study focuses on Pb2+-containing hybrid crystals, developing a simple strategy to control the Pb2+ coordination geometry through the molecular design of azole ligands. By preprogramming the coordination number of Pb2+ with azolate ligands, we succeeded in obtaining an isotropic coordination environment at a higher coordination number, resulting in a dispersed valence band and shallow valence band maximum while having a wide band gap. Detailed analysis of the band structures reveals that the energy levels and symmetry of the molecular orbitals of the anions play important roles in realizing these antinomic properties. This ligand-directed approach achieves both isotropy and covalency in the coordination bond by exploiting the diversity of the molecular orbitals. Our findings provide a foundation for future design strategies to optimize electronic structures in hybrid materials, advancing their application in semiconductive devices.
中文翻译:
Pb2+ 杂化晶体中的配体定向价带工程:实现色散带和浅价带最大值
虽然晶体杂化固体作为新型半导体具有巨大潜力,但大多数半导体杂化物利用过渡金属离子,由于 d 轨道产生的小带色散,这本质上限制了载流子迁移率。过渡后金属离子的填充 s 轨道为设计分散价带提供了潜力,但将这些金属离子的局部结构设计转化为价带工程的方法仍在开发中。本研究侧重于含 Pb2+ 的杂化晶体,开发了一种简单的策略,通过唑类配体的分子设计来控制 Pb2+ 配位几何形状。通过用偶氮酸盐配体预编程 Pb2+ 的配位数,我们成功地获得了较高配位数的各向同性配位环境,从而产生分散的价带和浅的价带最大值,同时具有宽带隙。对能带结构的详细分析表明,阴离子分子轨道的能级和对称性在实现这些反律特性方面起着重要作用。这种配体导向的方法通过利用分子轨道的多样性,在配位键中实现了各向同性和共价性。我们的研究结果为未来的设计策略提供了基础,以优化混合材料中的电子结构,从而推进它们在半导体器件中的应用。
更新日期:2024-11-20
中文翻译:
Pb2+ 杂化晶体中的配体定向价带工程:实现色散带和浅价带最大值
虽然晶体杂化固体作为新型半导体具有巨大潜力,但大多数半导体杂化物利用过渡金属离子,由于 d 轨道产生的小带色散,这本质上限制了载流子迁移率。过渡后金属离子的填充 s 轨道为设计分散价带提供了潜力,但将这些金属离子的局部结构设计转化为价带工程的方法仍在开发中。本研究侧重于含 Pb2+ 的杂化晶体,开发了一种简单的策略,通过唑类配体的分子设计来控制 Pb2+ 配位几何形状。通过用偶氮酸盐配体预编程 Pb2+ 的配位数,我们成功地获得了较高配位数的各向同性配位环境,从而产生分散的价带和浅的价带最大值,同时具有宽带隙。对能带结构的详细分析表明,阴离子分子轨道的能级和对称性在实现这些反律特性方面起着重要作用。这种配体导向的方法通过利用分子轨道的多样性,在配位键中实现了各向同性和共价性。我们的研究结果为未来的设计策略提供了基础,以优化混合材料中的电子结构,从而推进它们在半导体器件中的应用。