当前位置:
X-MOL 学术
›
ACM Trans. Graph.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dense Server Design for Immersion Cooling
ACM Transactions on Graphics ( IF 7.8 ) Pub Date : 2024-11-19 , DOI: 10.1145/3687965 Milin Kodnongbua, Zachary Englhardt, Ricardo Bianchini, Rodrigo Fonseca, Alvin Lebeck, Daniel S. Berger, Vikram Iyer, Fiodar Kazhamiaka, Adriana Schulz
ACM Transactions on Graphics ( IF 7.8 ) Pub Date : 2024-11-19 , DOI: 10.1145/3687965 Milin Kodnongbua, Zachary Englhardt, Ricardo Bianchini, Rodrigo Fonseca, Alvin Lebeck, Daniel S. Berger, Vikram Iyer, Fiodar Kazhamiaka, Adriana Schulz
The growing demands for computational power in cloud computing have led to a significant increase in the deployment of high-performance servers. The growing power consumption of servers and the heat they produce is on track to outpace the capacity of conventional air cooling systems, necessitating more efficient cooling solutions such as liquid immersion cooling. The superior heat exchange capabilities of immersion cooling both eliminates the need for bulky heat sinks, fans, and air flow channels while also unlocking the potential go beyond conventional 2D blade servers to three-dimensional designs. In this work, we present a computational framework to explore designs of servers in three-dimensional space, specifically targeting the maximization of server density within immersion cooling tanks. Our tool is designed to handle a variety of physical and electrical server design constraints. We demonstrate our optimized designs can reduce server volume by 25--52% compared to traditional flat server designs. This increased density reduces land usage as well as the amount of liquid used for immersion, with significant reduction in the carbon emissions embodied in datacenter buildings. We further create physical prototypes to simulate dense server designs and perform real-world experiments in an immersion cooling tank demonstrating they operate at safe temperatures. This approach marks a critical step forward in sustainable and efficient datacenter management.
中文翻译:
用于浸入式冷却的密集服务器设计
云计算对计算能力的需求不断增长,导致高性能服务器的部署显著增加。服务器不断增长的功耗及其产生的热量有望超过传统空气冷却系统的容量,因此需要更高效的冷却解决方案,例如液体浸入式冷却。浸入式冷却的卓越热交换能力既消除了对笨重的散热器、风扇和气流通道的需求,又释放了超越传统 2D 刀片服务器的潜力,实现三维设计。在这项工作中,我们提出了一个计算框架来探索三维空间中的服务器设计,特别是针对浸入式冷却罐内服务器密度的最大化。我们的工具旨在处理各种物理和电气服务器设计限制。我们证明,与传统的平面服务器设计相比,我们的优化设计可以将服务器体积减少 25--52%。这种增加的密度减少了土地使用以及用于浸泡的液体量,并显着减少了数据中心建筑中的碳排放量。我们进一步创建物理原型来模拟密集的服务器设计,并在浸入式冷却罐中进行真实世界的实验,证明它们在安全温度下运行。这种方法标志着在可持续和高效的数据中心管理方面向前迈出了关键一步。
更新日期:2024-11-19
中文翻译:
用于浸入式冷却的密集服务器设计
云计算对计算能力的需求不断增长,导致高性能服务器的部署显著增加。服务器不断增长的功耗及其产生的热量有望超过传统空气冷却系统的容量,因此需要更高效的冷却解决方案,例如液体浸入式冷却。浸入式冷却的卓越热交换能力既消除了对笨重的散热器、风扇和气流通道的需求,又释放了超越传统 2D 刀片服务器的潜力,实现三维设计。在这项工作中,我们提出了一个计算框架来探索三维空间中的服务器设计,特别是针对浸入式冷却罐内服务器密度的最大化。我们的工具旨在处理各种物理和电气服务器设计限制。我们证明,与传统的平面服务器设计相比,我们的优化设计可以将服务器体积减少 25--52%。这种增加的密度减少了土地使用以及用于浸泡的液体量,并显着减少了数据中心建筑中的碳排放量。我们进一步创建物理原型来模拟密集的服务器设计,并在浸入式冷却罐中进行真实世界的实验,证明它们在安全温度下运行。这种方法标志着在可持续和高效的数据中心管理方面向前迈出了关键一步。