当前位置:
X-MOL 学术
›
J. Magnes. Alloys
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Overcoming oxidation and enhancing dispersion of nanoparticles via molten salt: Configurational distribution of TiCnp in pure Mg
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.jma.2024.10.010 Xuanchang Zhang, Xiaojun Wang, Nodir Turakhodjaevr, Xuejian Li, Hailong Shi, Yuanyuan Zhang, Xiaoshi Hu, Chao Xu
Journal of Magnesium and Alloys ( IF 15.8 ) Pub Date : 2024-11-20 , DOI: 10.1016/j.jma.2024.10.010 Xuanchang Zhang, Xiaojun Wang, Nodir Turakhodjaevr, Xuejian Li, Hailong Shi, Yuanyuan Zhang, Xiaoshi Hu, Chao Xu
Nanoparticle-reinforced Mg matrix composites (NPMMCs) capitalize on the synergistic properties of nanoparticles and Mg matrix, resulting in enhanced mechanical attributes compared to matrix. Nonetheless, effective high-temperature dispersion of nanoparticles remains challenging. This study employs a molten salt dispersant (NaCl-KCl-MgCl2) effectively mitigating the oxidation and combustion of TiC nanoparticles (TiCnp). Compared with the atmosphere, the molten salt facilitates the pre-dispersion of TiCnp through thermal motion at elevated temperatures, thereby reducing agglomeration between the TiCnp. Simultaneously, the molten salt effectively wets and disrupts the oxide layer on the surface of Mg melt, facilitating the wetting of TiCnp by the Mg melt. The successful incorporation of 3 vol.% TiCnp into the Mg matrix is achieved by utilizing molten salt, and the addition of TiCnp increases the viscosity of mg melt. Further dispersed by ultrasonic dispersion, the unique distribution of TiCnp within ring-like structures was obtained which was attributed to the increase of viscosity. As a configurational distribution, the ring-like TiCnp distribution morphology significantly enhances the mechanical properties of composites, as evidenced by an approximate 50 % increase in compressive strength (UCS).
中文翻译:
通过熔盐克服氧化并增强纳米颗粒的分散性:TiCnp 在纯 Mg 中的构型分布
纳米颗粒增强镁基复合材料 (NPMMC) 利用纳米颗粒和镁基体的协同特性,与基体相比,其机械属性得到增强。尽管如此,纳米颗粒的有效高温分散仍然具有挑战性。本研究采用熔盐分散剂 (NaCl-KCl-MgCl2) 有效减轻 TiC 纳米颗粒 (TiCnp) 的氧化和燃烧。与大气相比,熔盐在高温下通过热运动促进了 TiCnp 的预分散,从而减少了 TiCnp 之间的团聚。同时,熔盐有效地润湿并破坏了 Mg 熔体表面的氧化层,促进了 Mg 熔体对 TiCnp 的润湿。利用熔盐将 3 vol.% TiCnp 成功掺入 Mg 基体中,而 TiCnp 的添加增加了 Mg 熔体的粘度。通过超声分散进一步分散,获得了 TiCnp 在环状结构内的独特分布,这归因于粘度的增加。作为构型分布,环状 TiCnp 分布形态显着增强了复合材料的机械性能,抗压强度 (UCS) 增加了约 50% 就证明了这一点。
更新日期:2024-11-20
中文翻译:
通过熔盐克服氧化并增强纳米颗粒的分散性:TiCnp 在纯 Mg 中的构型分布
纳米颗粒增强镁基复合材料 (NPMMC) 利用纳米颗粒和镁基体的协同特性,与基体相比,其机械属性得到增强。尽管如此,纳米颗粒的有效高温分散仍然具有挑战性。本研究采用熔盐分散剂 (NaCl-KCl-MgCl2) 有效减轻 TiC 纳米颗粒 (TiCnp) 的氧化和燃烧。与大气相比,熔盐在高温下通过热运动促进了 TiCnp 的预分散,从而减少了 TiCnp 之间的团聚。同时,熔盐有效地润湿并破坏了 Mg 熔体表面的氧化层,促进了 Mg 熔体对 TiCnp 的润湿。利用熔盐将 3 vol.% TiCnp 成功掺入 Mg 基体中,而 TiCnp 的添加增加了 Mg 熔体的粘度。通过超声分散进一步分散,获得了 TiCnp 在环状结构内的独特分布,这归因于粘度的增加。作为构型分布,环状 TiCnp 分布形态显着增强了复合材料的机械性能,抗压强度 (UCS) 增加了约 50% 就证明了这一点。