当前位置:
X-MOL 学术
›
Chem. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Optimized Surface Strain in L10-Type Pt0.8Ga0.2Co Intermetallic Catalyst for Enhanced Oxygen Reduction in Fuel Cells
Chemistry of Materials ( IF 7.2 ) Pub Date : 2024-11-20 , DOI: 10.1021/acs.chemmater.4c01968 Longhai Zhang, Yingjie Deng, Jiaxi Zhang, Weiquan Tan, Liming Wang, Li Du, Huiyu Song, Shijun Liao, Dai Dang, Shuhui Sun, Zhiming Cui
Chemistry of Materials ( IF 7.2 ) Pub Date : 2024-11-20 , DOI: 10.1021/acs.chemmater.4c01968 Longhai Zhang, Yingjie Deng, Jiaxi Zhang, Weiquan Tan, Liming Wang, Li Du, Huiyu Song, Shijun Liao, Dai Dang, Shuhui Sun, Zhiming Cui
Tuning surface strain has been proven to be an efficient strategy for improving the kinetics of the oxygen reduction reaction of Pt–M electrocatalysts (M = non-noble metals). However, it remains a grand challenge to achieve optimal compressive strain, particularly on a platform of low-Pt nanocrystals. Herein, we report a novel approach involving the partial substitution of a Pt site with Ga, resulting in the development of a high-performance L10-type Pt0.8Ga0.2Co intermetallic catalyst. The incorporation of Ga not only fine-tunes the surface strain to approach the optimum region of the theoretical volcano plot but also facilitates the formation of a more stable intermetallic structure dynamically. This enhancement significantly improves long-term electrochemical durability. Pt0.8Ga0.2Co/C exhibits a markedly improved intrinsic activity of 3.39 mA cm–2 and, more importantly, a high mass activity of 0.77 A mgPt–1 at 0.90 V in a fuel cell, surpassing the performance of most previously reported L10 Pt-based intermetallics. Notably, catalytic durability is confirmed through only 28% mass activity loss after 30,000 potential cycles (vs 40% loss for the DOE target). This work paves the way for the development of promising low-Pt electrocatalysts for efficient energy conversion devices.
中文翻译:
L10 型 Pt0.8Ga0.2Co 金属间化合物催化剂中的优化表面应变,以增强燃料电池中的氧还原
调整表面应变已被证明是改善 Pt-M 电催化剂(M = 非贵金属)氧还原反应动力学的有效策略。然而,实现最佳压缩应变仍然是一个巨大的挑战,尤其是在低 Pt 纳米晶体平台上。在此,我们报道了一种涉及用 Ga 部分取代 Pt 位点的新方法,从而开发出一种高性能的 L10 型 Pt0.8Ga0.2Co 金属间化合物催化剂。Ga 的掺入不仅微调了表面应变以接近理论火山图的最佳区域,而且还有助于动态地形成更稳定的金属间化合物结构。这种增强显著提高了长期电化学耐久性。Pt0.8Ga0.2Co/C 在燃料电池中表现出 3.39 mA cm-2 的本征活性显着提高,更重要的是,在 0.90 V 下,Pt-1 的质量活性为 0.77 A mgPt–1,超过了以前报道的大多数 L10 Pt 基金属间化合物的性能。值得注意的是,在 30,000 次潜在循环后,质量活性损失仅为 28%(而 DOE 目标的损失为 40%),证实了催化耐久性。这项工作为开发用于高效能量转换器件的有前途的低 Pt 电催化剂铺平了道路。
更新日期:2024-11-20
中文翻译:
L10 型 Pt0.8Ga0.2Co 金属间化合物催化剂中的优化表面应变,以增强燃料电池中的氧还原
调整表面应变已被证明是改善 Pt-M 电催化剂(M = 非贵金属)氧还原反应动力学的有效策略。然而,实现最佳压缩应变仍然是一个巨大的挑战,尤其是在低 Pt 纳米晶体平台上。在此,我们报道了一种涉及用 Ga 部分取代 Pt 位点的新方法,从而开发出一种高性能的 L10 型 Pt0.8Ga0.2Co 金属间化合物催化剂。Ga 的掺入不仅微调了表面应变以接近理论火山图的最佳区域,而且还有助于动态地形成更稳定的金属间化合物结构。这种增强显著提高了长期电化学耐久性。Pt0.8Ga0.2Co/C 在燃料电池中表现出 3.39 mA cm-2 的本征活性显着提高,更重要的是,在 0.90 V 下,Pt-1 的质量活性为 0.77 A mgPt–1,超过了以前报道的大多数 L10 Pt 基金属间化合物的性能。值得注意的是,在 30,000 次潜在循环后,质量活性损失仅为 28%(而 DOE 目标的损失为 40%),证实了催化耐久性。这项工作为开发用于高效能量转换器件的有前途的低 Pt 电催化剂铺平了道路。