当前位置: X-MOL 学术ACS Sustain. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Screening of Ionic Liquids for Efficient CO2 Cycloaddition Catalysis under Mild Condition: A Combined Machine Learning and DFT Approach
ACS Sustainable Chemistry & Engineering ( IF 7.1 ) Pub Date : 2024-11-19 , DOI: 10.1021/acssuschemeng.4c06007
Jinya Li, Xinke Qi, Zhengkun Zhang, Yingying Wang, Lanxue Dang, Yuanyuan Li, Li Wang, Jinglai Zhang

The industrial application of ionic liquid-catalyzed CO2 cycloaddition reactions is impeded by harsh conditions. We propose a novel approach that utilizes machine learning and density functional theory (DFT) to overcome this challenge. By training regression algorithms on a data set of 10,174 experimental data points, we developed a predictive model for CO2 solubility in ionic liquids. The random forest (RF) model exhibited exceptional accuracy, enabling the prediction of the CO2 solubility in 1624 newly generated ionic liquids. Subsequent experimental validation confirmed the efficacy of the RF model. Moreover, employing the RF model and DFT calculation, we identified four ionic liquids with high CO2 solubility and low energy barriers for catalytic reactions, presenting promising candidates for efficient CO2 cycloaddition with epichlorohydrin under mild conditions. This study showcases a streamlined approach to catalyst discovery by integrating machine learning and DFT methods, offering a pathway toward sustainable CO2 utilization.

中文翻译:


在温和条件下筛选离子液体以进行高效的 CO2 环加成催化:机器学习和 DFT 相结合的方法



离子液体催化的 CO2 环加成反应的工业应用受到恶劣条件的阻碍。我们提出了一种利用机器学习和密度泛函理论 (DFT) 来克服这一挑战的新方法。通过在包含 10,174 个实验数据点的数据集上训练回归算法,我们开发了一个 CO2 在离子液体中溶解度的预测模型。随机森林 (RF) 模型表现出极高的准确性,能够预测 CO2 在 1624 种新生成的离子液体中的溶解度。随后的实验验证证实了 RF 模型的有效性。此外,采用 RF 模型和 DFT 计算,我们确定了四种具有高 CO2 溶解度和低催化反应能垒的离子液体,为在温和条件下使用环氧氯丙烷进行高效 CO2 环加成反应提供了有前途的候选者。本研究通过整合机器学习和 DFT 方法展示了一种简化的催化剂发现方法,为可持续利用 CO2 提供了一条途径。
更新日期:2024-11-19
down
wechat
bug